基于邻域节点结构编码的图神经网络异常检测方法与装置.pdf
静芙****可爱
亲,该文档总共15页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
基于邻域节点结构编码的图神经网络异常检测方法与装置.pdf
本发明公开了基于邻域节点结构编码的图神经网络异常检测方法与装置,包括:将原始数据转换为图神经网络的输入数据,输入数据包括节点属性矩阵、邻接矩阵;从邻接矩阵抽取出结构特征并进行矩阵分解,得到节点角色特征与角色结构特征因子;将节点角色特征与其转置矩阵相乘,得到高阶邻接矩阵;将节点属性矩阵与邻接矩阵、节点属性矩阵与高阶邻接矩阵分别输入图神经网络,得到节点角色语义潜变量和节点角色语义潜变量;并进行动态加权,得到最终节点表示,将其输入至激活函数,训练图神经网络,直至图神经网络收敛,将激活函数的输出向量中概率最高的标
图节点异常检测方法及装置.pdf
本申请公开了一种图节点异常检测方法及装置。方法的一具体实施方式包括:获取待检测图;将待检测图输入预先训练的、基于生成对抗网络的异常检测模型,确定表征待检测图中的每个节点的异常程度的异常值,其中,异常值根据待检测图与目标图中相对应的节点之间关于节点特征的第一误差,以及相对应的节点之间关于结构特征的第二误差确定,目标图由异常检测模型中的生成网络参照待检测图生成;根据待检测图中的每个节点的异常值,确定待检测图中的异常节点。本申请提供了一种基于生成对抗网络的图节点异常检测方法,提高了节点异常检测的准确度。
基于图神经网络的节点分类方法及装置.pdf
本申请提供一种基于图神经网络的节点分类方法及装置。所述方法包括:将具有多个标记节点的连通图输入图神经网络,多次执行对连通图中各未标记节点的分类处理,直至满足预设条件;其中,每次分类处理均包括:根据连通图中的各标记节点,获取未标记节点的分类置信度;从各未标记节点中,获取分类置信度不小于图神经网络的当前预设置信度的多个目标节点;根据各目标节点的分类置信度,确定各目标节点的类别;将各目标节点添加至各标记节点中,并根据预设衰减值更新当前预设置信度。本申请实施例提供的基于图神经网络的节点分类方法可以提高节点分类的准
基于图结构与异常注意力机制的机房异常检测方法及装置.pdf
本发明涉及机房检测技术领域,公开了基于图结构与异常注意力机制的机房异常检测方法及装置。本发明根据目标电力机房的传感器监测数据构建多维时间序列,将序列转换为图结构并获取对应的邻接矩阵,根据邻接矩阵和对应图结构的附加权重得到聚合矩阵,将聚合矩阵输入至预先训练完成的图卷积神经网络,以提取图结构特征;并将多维时间序列片段和图结构特征输入到预先训练完成的异常检测模型,得到对应异常检测结果,进而确定异常数据;其中异常检测模型包括多级编解码模块,每级编解码模块包括基于关联差异的Transformer编码器及解码器,该编
基于图神经网络模型的节点表示方法和装置.pdf
本说明书实施例提供一种基于图神经网络模型的节点表示方法和装置,方法包括:获取动态变化的关系网络图在多个时间切片中对应的多个图结构,以及基于所述多个图结构分别训练的多个图神经网络模型;从所述多个图结构中,分别提取目标节点对应于所述多个时间切片的多个子图;将所述多个子图对应输入到所述多个图神经网络模型,得到所述目标节点对应于所述多个时间切片的多个节点嵌入向量;通过基于时序的神经网络模型,融合所述多个节点嵌入向量,得到所述目标节点的融合向量。能够提升基于图神经网络模型的节点表示的准确性。