行人模型的训练方法、装置、电子设备以及存储介质.pdf
是你****元呀
亲,该文档总共21页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
行人模型的训练方法、装置、电子设备以及存储介质.pdf
本公开涉及一种行人模型的训练方法、装置、电子设备以及存储介质,属于自动驾驶技术领域。所述方法包括:构建行人模型;根据仿真系统的地图信息和仿真系统中目标车辆的行驶信息,得到行人模型的训练数据;其中,目标车辆为仿真系统中正在行驶的车辆,且目标车辆与行人模型发生交通事故的概率大于预设概率;利用训练数据,对行人模型进行强化学习的训练,以使训练后的行人模型与目标车辆发生交通事故的概率大于预设阈值,预设阈值大于预设概率。本公开可以通过行人模型模拟实际开放道路场景下的各种突发情况,对自动驾驶车辆进行有效的测试。
行人检测模型训练方法、装置以及存储介质.pdf
本公开提出一种行人检测模型训练方法、装置以及存储介质,包括:获取训练样本图像,并利用特征金字塔网络对训练样本图像进行处理,以得到特征金字塔,并将特征金字塔转化为图像块线性嵌入序列,并将图像块线性嵌入序列输入至预先构建的Transformer网络,以输出多个预测框的位置及置信度,并基于训练样本图像中实际框的位置及置信度,和预测框的位置及置信度,计算目标损失值,以及根据目标损失值进行反向传播,以更新网络权重,能够将特征金字塔网络与Transformer网络进行由粗到精的级联,使网络学习到行人图像中各个维度的特
分类模型的训练方法、装置、电子设备以及存储介质.pdf
本发明公开了一种分类模型的训练方法、装置、电子设备以及存储介质,属于人工智能技术领域。该方法包括:通过初始模型的目标分类分支,对样本图像进行处理得到分类损失值;所述目标分类分支用于预测样本图像中目标对象的目标分类结果;通过初始模型的样本识别分支,对所述样本图像进行处理得到识别损失值;所述样本识别分支用于预测样本图像中目标对象的样本识别结果;通过初始模型的权重调节分支,对所述样本图像进行处理,得到对所述目标分类分支和所述样本识别分支进行权重调节的损失权重;根据所述分类损失值、所述识别损失值和所述损失权重,对
目标检测模型的训练方法、装置、电子设备以及存储介质.pdf
本公开提供了目标检测模型的训练方法、装置、电子设备以及存储介质,涉及计算机视觉、深度学习技领域术。具体实现方案为:构建初始的第一目标检测模型,其中,第一目标检测模型中第一主干网络采用正样本对和负样本对训练得到;采用样本图像以及对应的样本目标对初始的第一目标检测模型进行训练,得到训练好的第一目标检测模型;采用样本图像、样本图像对应的样本目标、以及第一目标检测模型输出的样本图像的中间表示,对初始的第二目标检测模型进行训练;其中,样本图像不需要人工标注,人工成本低;且先对重量级的第一目标检测模型进行训练,然后对
模型联合训练方法、装置以及存储介质.pdf
本公开提供了一种模型联合训练方法、装置以及存储介质,其中的方法包括:使用训练样本对编码器网络模型和第一目标任务网络模型进行训练,得到训练好的编码器网络模型以及对应的编码网络参数、训练好的第一目标任务网络模型以及对应的第一网络参数;依次将多个任务网络模型中的各个其它任务网络模型设置为第二目标任务网络模型,在保持编码网络参数的状态下,依次对各个第二目标任务网络模型进行训练,获得训练好的各个第二目标任务网络模型以及对应的第二网络参数。本公开提高了模型训练速度,降低了训练复杂度,并且能够满足不同任务对于数据质量的