预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共29页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

安徽省第11讲一次函数及其图象要点梳理要点梳理要点梳理要点梳理要点梳理一个方法待定系数法是求一次函数解析式的常用方法,一般是先设待求的函数关系式(其中含有未知常数),再根据条件列出方程或方程组,通过解方程或方程组,求出未知系数,从而得到所求函数解析式的方法.两个区别(1)正比例函数和一次函数的区别正比例函数是一次函数的特殊情况,一次函数包括正比例函数.也就是说:如果一个函数是正比例函数,那么一定是一次函数,但是,一个函数是一次函数,不一定是正比例函数.(2)正比例和正比例函数的区别成正比例的两个量之间的函数关系不一定是正比例函数,但正比例函数的两个量一定成正比例.1.(2014·深圳)已知函数y=ax+b经过(1,3),(0,-2),则a-b=()A.-1B.-3C.3D.72.(2014·济南)若一次函数y=(m-3)x+5的函数值y随x的增大而增大,则()A.m>0B.m<0C.m>3D.m<335.(2014·河北)如图,直线l经过第二、三、四象限,l的解析式是y=(m-2)x+n,则m的取值范围在数轴上表示为()一次函数y=kx+b中,系数k和b对图象及性质的影响【点评】(1)一次函数y=kx+b,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.(2)一次函数y=kx+b(k,b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).1.(1)(2012·娄底)对于一次函数y=-2x+4,下列结论错误的是()A.函数值随自变量的增大而减小B.函数的图象不经过第三象限C.函数的图象向下平移4个单位长度得y=-2x的图象D.函数的图象与x轴的交点坐标是(0,4)(2)(2013·福州)A,B两点在一次函数图象上的位置如图所示,两点的坐标分别为A(x+a,y+b),B(x,y),下列结论正确的是()A.a>0B.a<0C.b=0D.ab<0待定系数法求一次函数的解析式【点评】(1)k,b是一次函数y=kx+b的未知系数,这种先设待求函数关系式,再根据条件列出方程或方程组,求出未知数,从而得出所求结果的方法,就是待定系数法.(2)函数中常用的方法还有代入法.2.(2013·河北)如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.解:(1)直线y=-x+b交y轴于点P(0,b),由题意得b>0,t≥0,b=1+t,当t=3时,b=4,∴y=-x+4(2)当直线y=-x+b过M(3,2)时,2=-3+b,解得b=5,5=1+t,∴t=4,当直线y=-x+b过N(4,4)时,4=-4+b,解得b=8,8=1+t,∴t=7,∵点M,N位于l的异侧,∴4<t<7(3)t=1时,落在y轴上;t=2时,落在x轴上一次函数与一次方程、一次不等式综合问题(2)若直线y=-x+b与x轴交于点(2,0),则关于x的不等式-x+b>0的解集是.【点评】进一步熟悉函数图象的作法,通过图象体会一次函数与一元一次方程、一元一次不等式的内在联系,提高识图能力.一次函数y=kx+b,当y=0,则kx+b=0,得到一元一次方程,当y>0,则有kx+b>0,得到一元一次不等式.3(2)(2014·鄂州)在平面直角坐标系中,已知点A(2,3),B(4,7),直线y=kx-k(k≠0)与线段AB有交点,则k的取值范围为.(3)(2013·武汉)直线y=2x+b经过点(3,5),求关于x的不等式2x+b≥0的解集.一次函数的实际应用【点评】(1)数形结合,把数式和图形结合起来进行思考,互相解释、互相补充;(2)认真审题,理解题意,看懂坐标轴及图象上的点所表示的实际意义,是解决这类问题的关键,注意分段函数是由自变量的取值决定的.4.(2014·聊城)甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲、乙两车行驶的距离y(km)与时间x(h)的函数图象.(1)求出图中m,a的值;(2)求出甲车行驶路程y(km)与时间x(h)的函数解析式,并写出相应的x的取值范围;(3)当乙车行驶多长时间时,两车恰好相距50km.