预览加载中,请您耐心等待几秒...
1/5
2/5
3/5
4/5
5/5

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

教材分析——从宏观到微观王冰透彻分析教材是有效设计教学过程的前提,也是提高课堂教学质量的必要条件,下面笔者以人教版《数学》七年级上册“14.1变量与函数(第1课时)”为例谈淡如何进行教材分析.一、宏观把握教材分析教材首先应明确教材内容在《全日制义务教育数学课程标准(实验稿)》(以下简称《课标》)中的具体要求;其次,在分析过程中不仅要研究教材正文、例题、习题等具体内容,而且还应将局部的数学内容与整体的数学内容相联系,将一节的数学内容与一章的数学内容、一个学习阶段的数学内容、初中学段的数学内容甚至整个中学学段的数学内容相联系,要整体了解教材,宏观把握教材,具体地说,主要包括以下几个方面.1.明确教材内容在《课标》中的具体要求明确教材内容的重要知识点在《课标》中的具体要求,仔细领会刻画目标要求的动词“了解”“理解”“掌握”“灵活运用”“经历”“体验”“探索”的真正涵义,使之具体化,切实把握教材重要知识点在《课标》中的要求程度.例如,《课标》对“变量”“函数”的具体要求是:“通过简单实例,了解常量、变量的意义…‘能结合实例,了解函数的概念,……,能举出函数的实例”,解析此目标,将其分解为具体的、可操作的、可检测的行为要求,即:(1)通过简单实例,说出变量、常量的意义;(2)在具体问题情境中,能识别变量与常量;(3)能结合具体实例认识函数,并能判断两个变量之间是否存在函数关系;(4)能举出可用函数表示的现实生活中的实例,值得注意的是,《课标》中的具体目标是学生在本学段学习结束时在认知等水平上应达到的最基本要求,不是当前学生学习的目标要求,更不是学生学习的最高标准.2.了解教材内容在学科体系中的地位和作用将教材内容放在整个数学学科的大框架之中,从宏观上了解它在学科体系中的地位和作用,例如,本节内容中的函数概念,它是近代数学最基本的概念之一,它的引入是数学发展史上的一个重要里程碑,它使常量数学进入变量数学,实现了数学发展史上的一次重大转折,许多数学分支(如代数、三角、解析几何、微积分、实变函数、复变函数、常微分方程、偏微分方程、泛函分析等)都是以函数为中心展开研究的,函数已成为整个数学学科体系中的一个核心概念.3.熟悉教材内容在教材体系中的地位和作用将教材内容放在教材体系之中,研究它在一章中、一个学习阶段中、初中学段中甚至整个中学学段中的地位和作用.关于函数,初中数学主要研究函数的概念、正比例函数、反比例函数、一次函数、二次函数等,高中数学重点研究指数函数、对数函数、幂函数、三角函数、数列(以自然数集或其子集为定义域的函数)以及解析几何中的曲线方程(其实是一类隐函数),这些内容在中学数学中无论数量还是影响力都居于重要地位.作为初中数学四大学习领域之一的“数与代数”,其“四大主干”的三个——数、式、方程(不等式)都可以用函数来“统帅”(另一个主干是函数自身):数集的发展为函数的定义域和值域研究作了准备;“式”是函数关系的重要表达形式,“式”也可以看做是关于式中某个(或某些)字母的函数;方程或不等式的解集则可以理解为使左右两个函数值相等或不等的公共定义域的子集,显然,函数在“数与代数”领域中发挥着主导作用.函数的概念是本章内容的基础,一次函数是最简单的线性函数,正比例函数是特殊的一次函数,正比例函数的研究思路、研究方法对一次函数的研究具有方法论意义,用函数的观点看一元一次方程、一元一次不等式和二元一次方程组,不仅体现了“数与代数”领域中重要知识点——函数、方程(组)、不等式之间的内在联系,而且更加突出了函数的核心地位.二、微观分析教材在宏观把握教材的基础上,要对教材进行具体分析,从微观层面上深入挖掘教材,细致研究教材.1.理清教材内容的逻辑结构理清教材内容的逻辑结构就是要弄清楚教材内容主要包含哪些知识点,这些知识点之间有何内在的逻辑关系.本节内容主要有三个概念,即变量、常量、函数.变量和常量分别指在一个变化过程中数值发生变化的量和始终不变的量,函数是指在一个变化过程中的两个变量之间的单值对应关系,可见,变量与常量是变化过程中的一对矛盾统一体,变量是函数的研究对象,函数体现了两个变量在某一变化过程中的特殊依赖关系,即单值对应关系.2.析出核心内容、内容核心以及所蕴涵的数学思想方法分析教材不仅要理清教材内容的逻辑结构,更要析出对数学学科具有重要影响且处于主干地位、对学生数学认知结构具有不可或缺的基础作用的核心内容以及核心内容的内容核心,还要析出内容本身所蕴涵的数学思想方法.本节内容的核心内容是“函数的概念”,函数概念的核心是“单值对应关系”,“变量、常量”蕴涵分类思想,“函数”蕴涵变化思想和对应思想.3.领会正文、例题、习题的编写意图此过程主要研究教材内容究竟是如何围绕核心内容展开的,怎样突出内容的核心的,如何渗透数学思想方法的。本节内容教材呈现的