预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共17页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号CN109668710A(43)申请公布日2019.04.23(21)申请号201811545677.8(22)申请日2018.12.18(71)申请人大连理工大学地址116024辽宁省大连市甘井子区凌工路2号(72)发明人刘巍周孟德唐琳琳贾振元温正权姚壮梁冰李肖(74)专利代理机构大连理工大学专利中心21200代理人关慧贞(51)Int.Cl.G01M9/04(2006.01)权利要求书3页说明书8页附图5页(54)发明名称支杆尾撑式飞行器模型多维振动控制方法(57)摘要本发明支杆尾撑式飞行器模型多维振动控制方法属于振动主动控制领域,涉及一种应用于飞行器模型风洞试验的基于压电陶瓷作动器的支杆尾撑式飞行器模型多维振动控制方法。该方法通过布置在飞行器模型质心上的俯仰和偏航加速度传感器测量飞行器模型主振动加速度的两个分量,求取飞行器模型主振动矢量并确定支杆实时振动平面。引入惯性力求解多维振动减振器主动截面上所受动态弯矩,进而获取主动截面上应力分布,并根据主动截面上压电陶瓷作动器所受应力实时解算振动控制力。该方法采用多维振动主动控制系统,提高了风洞模型振动主动控制系统稳定性和可靠性,延长了压电陶瓷作动器使用寿命,进而保证了风洞试验数据质量及风洞试验安全性。CN109668710ACN109668710A权利要求书1/3页1.一种支杆尾撑式飞行器模型多维振动控制方法,其特征是,该方法采用振动主动控制方法,通过布置在飞行器模型质心上的俯仰和偏航加速度传感器测量飞行器模型主振动加速度的两个分量,求取飞行器模型主振动矢量并确定支杆实时振动平面,引入惯性力求解多维振动减振器主动截面上所受动态弯矩,进而获取主动截面上应力分布,通过实时振动平面空间位置关系确定多维振动减振器中参与工作的压电陶瓷作动器序号,并根据主动截面上压电陶瓷作动器所受应力实时解算振动控制力,进而产生反向弯矩抵抗飞行器模型振动过程中产生的动态弯矩,该方法采用基于压电陶瓷作动器的多维振动主动控制系统,最终达到对多维振动进行控制;多维振动控制方法的具体步骤如下:步骤1,建立飞行器模型支撑系统绝对坐标系在飞行器尾撑支杆(4)上建立绝对坐标系OXYZ(E),其原点建立在平衡位置时主动截面(F)与飞行器尾撑支杆(4)轴线的交点上,定义为O;X坐标轴的方向与平衡位置时飞行器尾撑支杆(4)轴线重合并指向飞行器模型(5),Y坐标轴的方向为主动截面(F)与俯仰平面的交线指向上方;Z坐标轴由右手法则确定;在飞行器模型(5)上建立振动测量坐标系OAXAYAZA(A),其原点建立在平衡位置时飞行器模型(5)的质心与X坐标轴的交点上,定义为OA;XA坐标轴的方向与OXYZ(E)坐标系X坐标轴方向重合,YA坐标轴与Y坐标轴平行指向上方;ZA坐标轴由右手法则确定;步骤2,实时获取主振动加速度在俯仰平面和偏航平面内分量利用飞行器模型(5)质心处的俯仰加速度传感器(6)和偏航加速度传感器(7)分别测量主振动在互相垂直的俯仰平面和偏航平面内的加速度反馈给由上位机(9)控制的实时控制器(8),在每个振动控制循环中采集多个俯仰平面加速度采样值和偏航平面加速度采样值,通过公式(1)、(2)分别计算一个振动控制循环内主振动加速度在俯仰方向与偏航方向上的加速度分量:其中,apith(t)为主振动加速度在俯仰方向上的加速度分量,ayaw(t)为主振动加速度在偏航方向上的加速度分量,apithi(t),ayawi(t)分别为第i(i=1,2,…N)个采样时刻飞行器模型(5)在俯仰平面和偏航平面加速度采样值,N为每一个振动控制循环内加速度采样值个数;步骤3,实时解算主振动加速度矢量主振动加速度由俯仰方向与偏航方向上的加速度分量合成得到,主振动加速度包括大小和方向,通过公式(3)、(4)实时解算每个振动控制循环内主振动加速度矢量的大小和方向,构建主振动加速度矢量:2CN109668710A权利要求书2/3页其中,a(t)为主振动加速度矢量,|a(t)|为主振动加速度矢量a(t)的大小,∠a(t)为主振动加速度矢量a(t)方向步骤4,建立飞行器模型实时振动主动控制坐标系并确定支杆实时振动平面;在主动截面(F)上建立实时振动主动控制坐标系OαXαYαZα(D),其原点与绝对坐标系OXYZ(E)原点O重合,定义为Oα;Xα坐标轴的方向与绝对坐标系OXYZ(E)的X坐标轴方向重合,Yα坐标轴与主振动加速度矢量a(t)方向重合,Zα坐标轴由右手法则确定,平面XαOαYα为支杆实时振动平面XαOαYα(C),由于飞行器模型(5)振动的随机性,实时振动主动控制坐标系OαXαYαZα(D)随时间实时变化,支杆实时振动平面XαOαYα(C)随时间实时变化;步骤5,解算支撑系统