一种基于改进前馈神经网络模型的短期电力负荷预测方法.pdf
慧颖****23
亲,该文档总共18页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
一种基于改进前馈神经网络模型的短期电力负荷预测方法.pdf
本发明提供了一种基于改进前馈神经网络模型的短期电力负荷预测方法,通过改进前馈神经网络模型进行电力负荷预测,该模型包括输入层、增强隐含层和输出层,增强隐含层包括若干个暂态隐含层,不同的暂态隐含层挖掘和捕捉不同负荷数据的特征,并通过聚合的方式得到增强隐含层的输出,从而适应负荷数据的多样性和不确定性。本发明的改进前馈神经网络模型,通过对传统神经网络结构中的隐含层进行改进,提出增强型隐含层概念,深度学习和挖掘负荷数据的特征,自适应学习负荷数据的不确定性和随机性,从而适应当前电力系统的负荷预测需要。
基于改进PSO的神经网络短期电力负荷预测模型.docx
基于改进PSO的神经网络短期电力负荷预测模型基于改进PSO的神经网络短期电力负荷预测模型一、引言电力负荷预测是电力系统运行和规划的重要组成部分。准确的负荷预测可以帮助电力系统进行容量规划、能源调度以及稳定供电。目前,神经网络是一种常用的负荷预测方法,通过训练网络模型来学习历史负荷数据,并预测未来一段时间的电力负荷情况。然而,传统的神经网络存在着训练速度慢和易陷入局部最优解的问题。为了解决这些问题,本文提出了一种基于改进粒子群算法(PSO)的神经网络短期电力负荷预测模型。二、相关工作目前,已经有一些研究使用
一种基于动态神经网络的超短期电力负荷预测方法.pdf
本发明涉及机器学习中的时间序列预测技术,具体涉及一种基于动态神经网络的超短期电力负荷预测方法,对原始负荷数据进行数据预处理,修正缺失值和异常值,整理为多个批量大小,并进行归一化操作;将预处理的数据传入CNN模块进行局部特征提取;将特征提取后的数据分别输入LSTM神经网络和优化的动态跳跃LSTM神经网络,将这两个网络的输出结果通过全连接层整合;最后将预处理过的数据经过线性回归模块提取局部线性特征后与神经网络部分的输出进行整合,反归一化后得到最终的超短期负荷预测结果。该方法既保留了常规网络预测结果,又加强了负
基于RBF神经网络模型的电力系统短期负荷预测.docx
基于RBF神经网络模型的电力系统短期负荷预测基于RBF神经网络模型的电力系统短期负荷预测摘要:电力系统短期负荷预测在电力系统运行和调度中具有重要的作用。随着电力系统的复杂性和负荷变化的不确定性增加,传统的负荷预测方法可能无法有效地提供准确的预测结果。因此,采用基于RBF神经网络模型的方法进行电力系统短期负荷预测具有较高的研究价值和实际应用意义。本论文介绍了RBF神经网络模型的基本原理和建模步骤,并在实际电力负荷数据上进行了实证分析。结果表明,基于RBF神经网络模型的电力系统短期负荷预测具有较高的精度和稳定
基于混沌神经网络的电力负荷短期预测.docx
基于混沌神经网络的电力负荷短期预测基于混沌神经网络的电力负荷短期预测摘要:电力负荷的短期预测对于电力系统的可靠运行和优化调度有着重要的意义。本文提出了一种基于混沌神经网络的电力负荷短期预测方法。首先,利用混沌序列产生器生成的混沌序列作为输入数据的处理,使得输入数据具有更高的随机性和不可预测性。然后,引入神经网络模型进行负荷预测,通过训练网络模型来学习负荷数据的变化规律。最后,通过对比实际负荷数据和预测结果,验证了该方法的有效性。关键词:电力负荷;短期预测;混沌序列;神经网络引言:电力负荷预测是电力系统运行