低维II-VI族半导体纳米结构的控制生长.doc
明钰****甜甜
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
低维II-VI族半导体纳米结构的控制生长.doc
低维II-VI族半导体纳米结构的控制生长低维半导体纳米材料的控制生长是当前纳米科学与技术研究领域的前沿和热点。本文选择典型的II-VI族半导体作为研究对象,采用电化学沉积、湿化学等方法制备了一系列低维纳米结构,对所获得纳米材料的尺寸、化学成分、晶体结构以及晶体取向成功地进行了控制。采用多孔氧化铝作为模板,通过直流电沉积方法,在120oC的低温条件下制备了高度有序的六方ZnS纳米线阵列。在电流密度I=0.1mAcm<sup>-2</sup>时制备了沿[110]方向生长的六方ZnS单晶纳米线阵列;当电流密度增
低维II-VI族半导体纳米结构的控制生长.doc
低维II-VI族半导体纳米结构的控制生长低维半导体纳米材料的控制生长是当前纳米科学与技术研究领域的前沿和热点。本文选择典型的II-VI族半导体作为研究对象,采用电化学沉积、湿化学等方法制备了一系列低维纳米结构,对所获得纳米材料的尺寸、化学成分、晶体结构以及晶体取向成功地进行了控制。采用多孔氧化铝作为模板,通过直流电沉积方法,在120oC的低温条件下制备了高度有序的六方ZnS纳米线阵列。在电流密度I=0.1mAcm<sup>-2</sup>时制备了沿[110]方向生长的六方ZnS单晶纳米线阵列;当电流密度增
低维InGaAs纳米结构的可控生长和表征.docx
低维InGaAs纳米结构的可控生长和表征低维InGaAs纳米结构的可控生长和表征摘要:低维纳米结构材料在纳米电子学和光电子学中具有重要的应用。本论文综述了InGaAs纳米结构的可控生长方法和表征技术,着重介绍了金属有机化学气相沉积(MOCVD)和分子束外延(MBE)两种主要生长技术,以及透射电子显微镜(TEM)、扫描电子显微镜(SEM)、X射线衍射(XRD)等表征技术。本论文的研究对于InGaAs纳米结构的可控生长和性质调控具有重要的参考价值。1.引言纳米结构材料是一种在各个方向上都具有尺寸限制的材料,其
IIVI族化合物半导体.ppt
(3)Ⅱ-Ⅵ族化合物熔点较高,在熔点下具有一定的气压,而且组成化合物的单质蒸汽压也较高。制备Ⅱ-Ⅵ族化合物的完整单晶体比较困难;除CdTe可以生成两种导电类型的晶体外,其它均为单一的导电类型,而且多数为N型,很难用掺杂方法获得P型材料。这是由于Ⅱ-Ⅵ族化合物晶体内点缺陷密度大,易发生补偿效应。这类材料除少数外,很难制成P-N结。这限制了Ⅱ-Ⅵ族化合物材料在生产方面和应用方面不如Ⅲ-Ⅴ族化合物材料普遍。Ⅱ-Ⅵ族化合物的能带结构都是直接跃迁型,且在Г点(k=0)的能带间隙(禁带宽度)比周期表中同一系列中的Ⅲ
IIVI族化合物半导体.ppt
(3)Ⅱ-Ⅵ族化合物熔点较高,在熔点下具有一定的气压,而且组成化合物的单质蒸汽压也较高。制备Ⅱ-Ⅵ族化合物的完整单晶体比较困难;除CdTe可以生成两种导电类型的晶体外,其它均为单一的导电类型,而且多数为N型,很难用掺杂方法获得P型材料。这是由于Ⅱ-Ⅵ族化合物晶体内点缺陷密度大,易发生补偿效应。这类材料除少数外,很难制成P-N结。这限制了Ⅱ-Ⅵ族化合物材料在生产方面和应用方面不如Ⅲ-Ⅴ族化合物材料普遍。Ⅱ-Ⅵ族化合物的能带结构都是直接跃迁型,且在Г点(k=0)的能带间隙(禁带宽度)比周期表中同一系列中的Ⅲ