预览加载中,请您耐心等待几秒...
1/4
2/4
3/4
4/4

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

支持向量机在数据挖掘中的应用研究论文支持向量机在数据挖掘中的应用研究论文摘要:支持向量机(SupportVectorMachine,SVM)是数据挖掘和机器学习中的一个很有效的工具。结合支持向量机在数据挖掘和机器学习中的应用,介绍了支持向量机的基本原理,发展方向及其研究热点。关键词:支持向量机;数据挖掘;机器学习オ1SVM的提出和基本思想支持向量机是Vapnik等人提出的,在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势,已应用于手写体识别、三维目标识别、人脸识别、文本图像分类等实际问题中,性能优于已有的学习方法,表现出良好的学习能力。它是从线性可分情况下的线性分类面发展而来的,接着利用核函数很好的解决了非线性可分情况。2支持向量机的几个发展(1)模糊支持向量机,引入样本对类别的隶属度函数,这样每个样本对于类别的影响是不同的,这种理论的'应用提高了SVM的抗噪声的能力,尤其适合在未能完全揭示输入样本特性的情况下。(2)最小二乘支持向量机。这种方法是在1999年提出,经过这几年的发展,已经应用要很多相关的领域。研究的问题已经推广到:对于大规模数据集的处理;处理数据的鲁棒性;参数调节和选择问题;训练和仿真。(3)加权支持向量机(有偏样本的加权,有偏风险加权)。(4)主动学习的支持向量机。主动学习在学习过程中可以根据学习进程,选择最有利于分类器性能的样本来进一步训练分类器,特能有效地减少评价样本的数量。(5)粗糙集与支持向量机的结合。首先利用粗糙集理论对数据的属性进行约简,能在某种程度上减少支持向量机求解计算量。(6)基于决策树的支持向量机。对于多类问题,采用二岔树将药分类的样本集构造出一系列的两类问题,每个两类构造一个SVM。(7)分级聚类的支持向量机。基于分级聚类和决策树思想构建多类svm,使用分级聚类的方法,可以先把n-1个距离较近的类别结合起来,暂时看作一类,把剩下的一类作为单独的一类,用svm分类,分类后的下一步不再考虑这单独的一类,而只研究所合并的n-1类,再依次下去。(8)算法上的提高。Vapnik在1995年提出了一种称为“chunking”的块算法,即如果删除矩阵中对应Lagrange乘数为0的行和列,将不会影响最终结果。Osuna提出了一种分解算法,应用于人脸识别领域。Joachims在1998年将Osuna提出的分解策略推广到解决大型SVM学习的算法。Platt于1998年提出了序贯最小优化每次的工作集中只有2个样本。(9)核函数的构造和参数的选择理论研究。基于各个不同的应用领域,可以构造不同的核函数,能够或多或少的引入领域知识。现在核函数广泛应用的类型有:多项式逼近、贝叶斯分类器、径向机函数、多层感知器。参数的选择现在利用交叉验证的方法来确认。(10)支持向量机从两类问题向多类问题的推广。Weston在1998年提出的多类算法为代表。在经典svm理论的基础上,直接在目标函数上进行改进,重新构造多值分类模型,建立k分类支持向量机。通过sv方法对新模型的目标函数进行优化,实现多值分类。一对多(one-against-rest)——Vapnik提出的,k类——k个分类器,第m个分类器将第m类与其余的类分开,也就是说将第m类重新标号为1,其他类标号为-1。完成这个过程需要计算k个二次规划,根据标号将每个样本分开,最后输出的是两类分类器输出为最大的那一类。不足:容易产生属于多类别的点(多个1)和没有被分类的点(标号均为-1)——不对,训练样本数据大,训练困难,推广误差无界。层(数分类方法),是对一对一方法的改进,将k个分类合并为两个大类,每个大类里面再分成两个子类,如此下去,直到最基本的k个分类,这样形成不同的层次,每个层次都用svm来进行分类——1对r-1法,构建k-1个分类器,不存在拒绝分类区。3主要研究热点从上面的发展中,我们可以总结出,目前支持向量机有着几方面的研究热点:核函数的构造和参数的选择;支持向量机从两类问题向多类问题的推广;更多的应用领域的推广;与目前其它机器学习方法的融合;与数据预处理(样本的重要度、属性的重要度、特征选择等)方法的结合。参考文献[1]@张学工.统计学习理论的本质[M].北京:清华大学出版社,2000.[2]@NelloCristianini,JohnShawe-Taylor.支持向量机导论[M].北京:电子工业出版社,2004.