预览加载中,请您耐心等待几秒...
1/7
2/7
3/7
4/7
5/7
6/7
7/7

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

《函数的单调性》的教学反思《函数的单调性》的教学反思(精选5篇)在日新月异的现代社会中,我们需要很强的教学能力,所谓反思就是能够迅速从一个场景和事态中抽身出来,看自己在前一个场景和事态中自己的表现。那么大家知道正规的反思怎么写吗?下面是小编帮大家整理的《函数的单调性》的教学反思(精选5篇),仅供参考,欢迎大家阅读。《函数的单调性》的教学反思1本节课采用导学案引导自学法。首先,复习函数单调性的定义,单调性又名增减性,判断函数的单调性有两种方法:图像法和定义法。然后,要求学生自行阅读课本P57—P58,完成表格,表格将课本实例分析中的8个函数全部罗列出来,完成后观察表格的第3列和第6列,说明导数的正负与函数的单调性有何关系?学生易得出结论。从而说明判断函数的单调性还可以用导数法。接下来,讲解例1,实际操作,说明如何利用导数判断函数单调性,根据讲解过程,让学生总结求解的一般步骤,并做了2个练习。很不巧,此时下课铃声响了,本节教学任务没有完成。本节课,我设计了三个题型,仅完成了一个。课堂时间之所以把控的不好,原因很多,我反思之后,主要原因有以下两点:(1)学生基础差,对单调性的知识点掌握不扎实,且自主学习习惯尚未养成,导致阅读课本填表格的时间过长。我在想,是否可以让学生提前复习单调性的概念,并预习课本完成表格,以提高课堂效率。其实,本来也是这样打算的,但由于对学生的学习态度不自信,所以放弃了,想着课堂上也能完成,结果估计不足。应该对学生多一点信心和耐心,行为习惯的养成不是一朝一夕能做到的。(2)例1中,求导后的计算涉及到不等式的求解,学生对此知识点的把握也不是很到位,教师只能先带领学生回忆不等式的解法,再进行例1的求解。如此,时间又被耽误了。对于这一点,我也预估不足,说明我在备课时,对学情的分析不足。《函数的单调性》的教学反思21、本节课的亮点:教学过程中教师指导启发学生以已知的熟悉的二次函数为研究的起点,发现函数的导数的正负与函数单调性的关系,从而到更多的,更复杂的函数,从中发现规律,并推广到一般这个过程中既让学生获得了关于新知的内容,更可贵的是让学生体会到如何研究一个新问题,即探究方法的体验与感知.同时也渗透了归纳推理的数学思想方法,培养了学生的探索精神,积累了探究经验。2、不足之处:教学引入时间较长,致使整堂课时间安排显得前松后紧;在引导学生探讨如何把导数与函数的单调性联系起来时,列举的函数有点多;学生对与数形结合的理解还不是很熟练,今后应多加强训练。3、改进的思路:①选取函数时应简单,易懂②在引导学生提问时,问题要简明扼要③多进行公开课,锻炼自己的胆量和语言表达能力。《函数的单调性》的教学反思3函数的单调性是函数的重要性质。从知识的网络结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着极其广泛的应用。函数的单调性是培养学生数形结合思想的重要内容,也是研究变量的变化范围(如函数的最值、值域)的有利工具。在新课改中,更注重学生的感受、认知,为了更好的体现新课标的理念,在课堂教学的设计中我做了如下的尝试。一、教学内容分析函数的单调性是学生在了解函数概念后学习的函数的第一个性质,是函数学习中第一个用数学符号语言刻画的概念,为进一步学习函数其他性质提供了方法依据。对于函数单调性,学生的认知困难主要在两个方面:(1)用准确的数学符号语言刻画图象的上升与下降,这种由形到数的翻译,从直观到抽象的转变对高一的学生是比较困难的;(2)单调性的证明是学生在函数内容中首次接触到的代数论证内容,而学生在代数方面的推理论证能力是比较薄弱的。根据以上的分析和教学大纲的要求,确定了本节课的重点和难点。二、学习目标确立根据本课教材的特点、教学大纲对本节课的教学要求以及学生的认知水平,从三个不同的'方面确定了教学目标。重视单调性概念的形成过程和对概念本质的认识;强调判断、证明函数单调性的方法的落实以及数形结合思想的渗透;突出语言表达能力、推理论证能力的培养和良好思维习惯的养成。三、教学方法和教学手段的选择本节课是函数单调性的起始课,采用教师启发引导,学生探究学习的教学方法,通过创设情境,引导探究,师生交流,最终形成概念,获得方法。同时,本节课使用了多媒体投影和计算机来辅助教学,为学生提供直观感性的材料,有助于学生对问题的理解和认识。四、教学过程的设计为达到本节课的教学目标,突出重点,突破难点,教学上采取了以下的措施:首先从实际问题引入,并展现大量生活中的实例,如股票走势图,记忆遗忘曲线等让学生感受到数学在生活中无处不在,激发学习兴趣。其次,在探索概念阶段,先给出学生比较熟悉的一次函数和二次函数的图象,以他们为素材,先从图形上直观地看到函数图象上升或下降