预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

1.6有理数的乘方第1课时有理数的乘方1.理解有理数乘方的意义;(重点)2.掌握有理数乘方的运算;(难点)3.能利用数学知识解决实际问题激发学生学习的兴趣树立解决问题的信心.一、情境导入古希腊数学家阿基米德与国王下棋国王输了问阿基米德要什么奖赏.阿基米德对国王说:“我只要在棋盘上第一格放一颗麦子在第二个格子中放进前一个格子的两倍每一个格子中都是前一个格子中麦子数量的两倍一直将棋盘每一个格子摆满.”国王觉得很容易就可以满足他的要求于是就同意了.但很快国王就发现即使将国库所有的粮食都给他也不够.你们知道这是为什么吗?二、合作探究探究点一:乘方的意义把下列各式写成乘方的形式并指出底数和指数各是什么.(1)(-3.14)×(-3.14)×(-3.14)×(-3.14)×(-3.14);(2)eq\f(25)×eq\f(25)×eq\f(25)×eq\f(25)×eq\f(25)×eq\f(25);(3)m·m·m·…·m\s\up6(2n个m)).解析:首先化成幂的形式再指出底数和指数各是什么.解:(1)(-3.14)×(-3.14)×(-3.14)×(-3.14)×(-3.14)=(-3.14)5其中底数是-3.14指数是5;(2)eq\f(25)×eq\f(25)×eq\f(25)×eq\f(25)×eq\f(25)×eq\f(25)=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(25)))eq\s\up12(6)其中底数是eq\f(25)指数是6;(3)m·m·m·…·m\s\up6(2n个m))=m2n其中底数是m指数是2n.方法总结:乘方是一种特殊的乘法运算幂是乘方的结果当底数是负数或分数时要先用括号将底数括起来再写指数.探究点二:乘方的运算计算:(1)-(-3)3;(2)eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(34)))eq\s\up12(2);(3)eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(23)))eq\s\up12(3);(4)(-1)2015.解析:可根据乘方的意义先把乘方转化为乘法再根据乘法的运算法则来计算;或者先用符号法则来确定幂的符号再用乘法求幂的绝对值.解:(1)-(-3)3=-(-33)=33=3×3×3=27;(2)eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(34)))eq\s\up12(2)=eq\f(34)×eq\f(34)=eq\f(916);(3)eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(23)))eq\s\up12(3)=-eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(23)×\f(23)×\f(23)))=-eq\f(827);(4)(-1)2015=-1.方法总结:乘方的运算可以利用乘法的运算来进行.负数的奇数次幂是负数负数的偶数次幂是正数;-1的奇数次幂是-1-1的偶数次幂是1.探究点三:与乘方有关的探求规律问题有一张厚度为0.1毫米的纸将它对折一次后厚度为2×0.1毫米求:(1)对折2次后厚度为多少毫米?(2)对折20次后厚度为多少毫米?解析:要求每次对折后纸的厚度应先求出每次折叠后纸的层数再用每张的厚度乘以纸的层数即可.纸的对折次数与纸的层数关系如下:对折次数1234…20纸的层数24816…21222324…220解:(1)因为有一张厚度为0.1毫米的纸将它对折一次后厚度为2×0.1毫米所以对折2次的厚度是0.1×22毫米.答:对折2次的厚度是0.4毫米;(2)对折20次的厚度是0.1×220毫米=104857.6(毫米)答:对折20次的厚度是104857.6毫米.方法总结:解决本题的关键是将纸的层数化为幂的形式找出这些幂与对折次数的对应关系.三、板书设计1.有理数乘方的意义2.有理数乘方运算的符号法则:负数的奇次幂是负数负数的偶次幂是正数.正数的任何次幂都是正数0的任何正整数次幂都是0.3.与乘方有关的探求规律问题本节教学以故事引入提出问题引导学生积极思考并归结出答案由答案的表现形式向学生提出问题激发学生的求知欲望.在教师的启发诱导下自然过渡到新知识的学习接着层层设问引出乘方以及与乘方有关的概念采用归纳类比的方法把新旧知识联系起来既有利于复习巩固旧知识又有利于新知识的理解和掌握.