复件xdg—圆锥曲线方程性质及与弦有关的问题.doc
仙人****88
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
复件xdg—圆锥曲线方程性质及与弦有关的问题.doc
高三数学专题复习(1)--圆锥曲线方程性质及与弦有关的问题一、选择题:已知双曲线C:,则其离心率为()A.B.C.D.点P为直线上任意一点,,,则下列结论正确的是()A.B.C.D.以上都有可能已知F是双曲线C:-=1(a>0,b>0)的一个焦点,点F到C的一条渐近线的距离为2a,则双曲线C的离心率为()A.B.C.D.2已知椭圆:+=1(a>b>0)和圆O:,过椭圆上一点P引圆O的两条切线,切点分别为A,B,若椭圆上存在点P,使·=0,则椭圆离心率e的取值范围是()A.[,1)B.(0,
复件 xdg—圆锥曲线方程性质及与弦有关的问题.doc
高三数学专题复习(1)--圆锥曲线方程性质及与弦有关的问题一、选择题:已知双曲线C:,则其离心率为()A.B.C.D.点P为直线上任意一点,,,则下列结论正确的是()A.B.C.D.以上都有可能已知F是双曲线C:-=1(a>0,b>0)的一个焦点,点F到C的一条渐近线的距离为2a,则双曲线C的离心率为()A.B.C.D.2已知椭圆:+=1(a>b>0)和圆O:,过椭圆上一点P引圆O的两条切线,切点分别为A,B,若椭圆上存在点P,使·=0,则椭圆离心率e的取值范围是()A.[,1)B.(0,]C.[,1)D
圆锥曲线中点弦问题.doc
关于圆锥曲线的中点弦问题直线与圆锥曲线相交所得弦中点问题,是解析几何中的重要内容之一,也是高考的一个热点问题。这类问题一般有以下三种类型:(1)求中点弦所在直线方程问题;(2)求弦中点的轨迹方程问题;(3)求弦中点的坐标问题。其解法有代点相减法、设而不求法、参数法、待定系数法及中心对称变换法等。一、求中点弦所在直线方程问题例1过椭圆内一点M(2,1)引一条弦,使弦被点M平分,求这条弦所在的直线方程。解法一:设所求直线方程为y-1=k(x-2),代入椭圆方程并整理得:又设直线与
圆锥曲线中点弦问题.doc
圆锥曲线中点弦问题圆锥曲线中点弦问题圆锥曲线中点弦问题关于圆锥曲线的中点弦问题直线与圆锥曲线相交所得弦中点问题,是解析几何中的重要内容之一,也是高考的一个热点问题。这类问题一般有以下三种类型:(1)求中点弦所在直线方程问题;(2)求弦中点的轨迹方程问题;(3)求弦中点的坐标问题。其解法有代点相减法、设而不求法、参数法、待定系数法及中心对称变换法等。一、求中点弦所在直线方程问题例1过椭圆内一点M(2,1)引一条弦,使弦被点M平分,求这条弦所在的直线方程.解法一:设所求直线方程
圆锥曲线中点弦问题.doc
关于圆锥曲线的中点弦问题直线与圆锥曲线相交所得弦中点问题,是解析几何中的重要内容之一,也是高考的一个热点问题。这类问题一般有以下三种类型:(1)求中点弦所在直线方程问题;(2)求弦中点的轨迹方程问题;(3)求弦中点的坐标问题。其解法有代点相减法、设而不求法、参数法、待定系数法及中心对称变换法等。一、求中点弦所在直线方程问题例1过椭圆内一点M(2,1)引一条弦,使弦被点M平分,求这条弦所在的直线方程。解法一:设所求直线方程为y-1=k(x-2),代入椭圆方程并整理得:又设直线与