逻辑回归模型训练方法、装置及系统.pdf
慧颖****23
亲,该文档总共31页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
逻辑回归模型训练方法、装置及系统.pdf
本说明书实施例提供用于经由多个训练参与方来训练逻辑回归模型的方法和装置。在该方法中,逻辑回归模型被垂直切分为多个子模型,每个训练参与方具有一个子模型以及经过垂直切分后得到的特征数据子集。在训练时,第一训练参与方将标记值分解为多个部分标记值,并分别向各个第二训练参与方发送一个部分标记值。在各个训练参与方处,基于各自的当前子模型、特征数据子集以及部分标记值,确定该训练参与方处的预测差值。基于各个训练参与方的预测差值确定总预测差值。然后,各个训练参与方基于总预测差值和各自的特征数据子集,确定出对应的模型更新量并
联合训练逻辑回归模型的方法及装置.pdf
本说明书实施例提供一种联合训练逻辑回归模型的方法,所述训练涉及包括样本特征、样本标签和模型参数在内的3种训练数据,均被拆分为分片分布于两方之中;该方法由两方中任意的第一方执行,包括:利用随机数组第一分片中的3个随机数第一分片,对3种训练数据对应的3个第一方分片对应进行掩码处理,得到3个第一掩码分片,并发送给第二方,该随机数组第一分片由第三方将其生成的随机数组中的各数值拆分为两方分片后,将分片之一发送给第一方;利用3个第一掩码分片和从第二方接收的3个第二掩码分片,构建对应3种训练数据的3个掩码数据;基于3个
多方联合训练逻辑回归模型的方法及装置.pdf
本说明书实施例提供一种多方联合训练逻辑回归模型的方法,所述多方各自持有形成训练样本集的部分数据,所述方法应用于多方中任意的第一方;所述方法涉及多期训练,其中任一期包括:获取本期针对所述训练样本集划分出的多个批次;针对所述多个批次中的每个批次,基于该批次训练样本的第一特征分片和第一标签分片,以及所述逻辑回归模型的第一参数分片,确定第一损失分片,用于还原该批次对应的训练损失;在所述第一方为指定方的情况下,基于所述多个批次对应的多个训练损失,确定本期训练损失,用于评估本期训练后的逻辑回归模型的收敛状态。
针对逻辑回归模型进行联合训练的方法及装置.pdf
本说明书实施例提供一种多方联合针对逻辑回归模型进行联合训练的方法及装置,在多方联合利用各自的隐私数据进行逻辑回归模型训练过程中,利用多项式、分段函数等对逻辑斯蒂函数进行近似计算,以减少逻辑斯蒂函数计算的复杂度。具体地,针对训练数据的特点,结合各个数据持有方所持有的隐私数据的实际情况,确定对逻辑斯蒂函数近似计算的不同精度需求,从而选择逻辑回归模型中针对逻辑斯蒂函数的近似方案。该方式可以兼顾多方安全计算的逻辑回归模型准确性和效率需求,提高多方安全计算场景下联合训练逻辑回归模型的有效性。
模型训练方法、装置、设备及系统.pdf
本说明书实施例提供了一种模型训练方法、装置、设备及系统,其中方法包括:图像采集设备采集待识别用户的生物特征图像,基于学生模型对生物特征图像进行识别处理,得到识别结果;若根据识别结果确定生物特征图像满足预设的样本累积条件,则将生物特征图像确定为第一目标样本并保存;确定是否满足学生模型的自蒸馏训练条件,若是,则基于融合指导和一对多指导的自蒸馏训练方式,利用保存的第一目标样本对学生模型进行自蒸馏训练处理,得到更新后的学生模型;其中,学生模型由服务端基于预先训练的教师模型对待训练的学生网络进行蒸馏训练所得。