保护数据隐私的模型训练、预测方法及其系统.pdf
海昌****姐淑
亲,该文档总共17页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
保护数据隐私的模型训练、预测方法及其系统.pdf
本说明书中的实施例提供了保护数据隐私的模型训练、预测方法及其系统,其技术要点包括:训练的模型包括包含输入层的第一部分和包含输出层的第二部分,所述方法包括:对于任一训练样本,获取所述训练样本的特征值,所述第一部分基于所述特征值得到的模型中间值,所述第二部分基于所述模型中间值得到的输出结果,以及特征值还原装置基于所述模型中间值得到的所述特征值的还原值;调节所述模型的参数和/或结构,以增大训练样本的特征值的还原值与特征值本身的第一差异以及减小第二部分的输出结果和样本标签的第二差异。
保护数据隐私的业务预测模型训练方法及装置.pdf
本说明书实施例提供了一种保护数据隐私的业务预测模型训练方法及装置。在训练过程中,成员设备利用自身持有的对象特征数据,通过业务预测模型进行预测,利用预测结果确定用于更新模型参数的更新参量,其中包括针对业务预测模型的多个计算层的多个子参量;利用多个子参量,将多个计算层划分成第一类计算层和第二类计算层,第一类计算层的子参量值在指定范围以内;对第一类计算层的子参量进行隐私处理,并输出处理后子参量。多个成员设备的处理后子参量可以被聚合成聚合子参量。成员设备可以获取第一类计算层的聚合子参量,并利用聚合子参量和第二类计
保护数据隐私的两方联合训练预测模型的方法及装置.pdf
本说明书实施例提供一种保护数据隐私的两方联合训练预测模型的方法及装置,其中第一方和第二方对应部署预测模型中的序列表征层和预测层。所述方法应用于第一方,包括:利用序列表征层处理其持有的用户行为序列,其中包括样本用户在T个时刻做出的T个行为,具体地,利用行为表征子层确定T个行为对应的T个行为表征;利用注意力子层确定该T个行为表征对应的T个注意力权重,并用其对T个行为表征进行加权求和,得到原始序列表征;利用加噪子层对该原始序列表征添加基于行为个数T而确定的差分隐私噪声,得到加噪序列表征;从第二方接收其基于该加噪
保护数据隐私的两方联合训练预测模型的方法及装置.pdf
本说明书实施例提供一种保护数据隐私的两方联合训练预测模型的方法及装置,两方各自持有多个用户的不同特征部分,部署针对不同特征部分的表征层,其中标签方还部署预测层。该方法包括:两方各自在本地处理同一批用户样本的特征部分,得到对应的正序表征,且无标签方还生成乱序方阵;然后,标签方基于其正序表征与无标签方中的正序表征和变换方阵进行安全多方计算,得到乱序融合表征,从而基于利用预测层处理乱序融合表征而得到的乱序预测结果,和基于正序用户标签与无标签方中的乱序方阵进行安全矩阵乘法而得到的乱序预测标签,确定传播至两个表征层
保护数据隐私的双方联合训练业务预测模型的方法和装置.pdf
本说明书实施例提供一种保护数据隐私的双方联合训练业务预测模型的方法和装置,其中第一方和第二方分别拥有一部分特征数据,分别维护第一和第二参数部分。在模型迭代时,双方各自计算其特征矩阵与参数的乘积结果,第一方将其乘积结果同态加密后发送给拥有标签的第二方,由第二方进行同态运算,得到加密误差向量。然后,第二方对该加密误差向量添加混淆向量后发送给第一方,并与第一方各自采用该混淆向量和特征矩阵进行安全矩阵乘法,得到乘积分片。第二方可选的对乘积分片添加混淆,然后发给第一方。第一方由此确定出其第一梯度,据此更新其参数。