神经网络模型的训练方法及装置.pdf
论文****酱吖
亲,该文档总共22页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
神经网络模型的训练方法及装置.pdf
本申请提供了一种神经网络模型的训练方法及装置,涉及人工智能技术及云技术;方法包括:通过神经网络模型对标注有目标标签的训练样本进行预测,得到所述训练样本的预测标签;获取所述目标标签与所述预测标签之间的误差,并在所述神经网络模型中对所述误差进行反向传播;获取所述神经网络模型包含的各个网络层的缩放值,所述缩放值用于指示对反向传播至相应网络层的误差进行缩小或放大的比例;在反向传播所述误差的过程中,分别基于所述神经网络模型的各个网络层的缩放值,对反向传播至相应网络层的误差进行缩放处理;基于缩放处理后的误差,对所述神
神经网络模型的训练方法及装置.pdf
本说明书实施例提供一种神经网络模型的训练方法及装置。模型训练过程包括若干子训练过程,一个子训练过程包括预设数量个训练周期。在第N子训练过程的第M训练周期中,当第N子训练过程非首个子训练过程,且第M训练周期非首个训练周期时,基于第N‑1子训练过程的最后一个训练周期训练结束时得到的第一目标模型,以及第N子训练过程中的第M‑1训练周期训练结束时得到的第二目标模型,对待训练神经网络模型的训练过程进行调整,更新待训练神经网络模型。
神经网络模型的训练方法及装置.pdf
本说明书实施例提供一种神经网络模型的训练方法及装置,在训练方法中,基于在上一周期训练后的神经网络模型,分别确定在当前周期待训练的第一模型,以及用于辅助训练第一模型的第二模型。从样本集合中选取当前标定样本,并基于其执行以下步骤:将当前标定样本输入第一模型,得到第一概率分布。基于第一概率分布,确定当前标定样本的预测标签。将当前标定样本输入第二模型,得到第二概率分布。基于标定标签和预测标签,确定第一预测损失。基于第一概率分布和第二概率分布,确定第二预测损失。结合第一预测损失和第二预测损失,调整第一模型的参数。在
神经网络模型训练方法、装置及系统.pdf
本说明书实施例提供神经网络模型训练方法及装置。神经网络模型包括位于各个第一成员设备的第一神经网络子模型。各个第一成员设备使用私有数据进行模型预测得到预测标签数据并确定第一神经网络子模型的模型更新信息,将第一神经网络子模型的模型更新信息和本地样本分布信息提供给第二成员设备。第二成员设备根据各个第一成员设备的第一神经网络子模型的模型更新信息进行神经网络模型重构,根据各个第一成员设备的本地样本分布信息确定整体样本概率分布,并将重构后的神经网络模型和整体样本概率分布分发给各个第一成员设备。各个第一成员设备根据本地
神经网络模型的融合训练方法及装置.pdf
本说明书实施例提供一种神经网络模型的融合训练方法及装置。通过神经网络模型的模型训练过程包括若干训练周期,每个训练周期对应于使用训练样本集中所有样本数据进行模型训练的过程,神经网络模型用于对输入的业务数据进行业务预测。在当前的第一训练周期中,当第一训练周期不是第一个训练周期时,基于第一训练周期之前的训练周期训练结束时得到的神经网络模型对第一样本数据的预测数据的累积,而得到的第一目标预测数据,即根据第一目标预测数据对待训练神经网络模型的训练过程进行调整,更新待训练神经网络模型。