基于差分隐私的联邦学习方法、装置及电子设备.pdf
觅松****哥哥
亲,该文档总共18页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
基于差分隐私的联邦学习方法、装置及电子设备.pdf
本说明书实施例提供一种基于差分隐私的联邦学习方法及装置、电子设备,该方法应用于任一终端设备,包括多次迭代,每次迭代包括:基于训练数据和当前本地参数,确定待处理的第一梯度向量,对第一梯度向量进行多级量化处理,得到第二梯度向量,在第二梯度向量的向量空间中,基于第二梯度向量,生成第一向量集合和第二向量集合,进行满足差分隐私的采样,以从第一向量集合或第二向量集合中随机采样出第三梯度向量。对第三梯度向量进行归一化,得到目标梯度向量,并向服务器上传目标梯度向量。能够提高联邦学习过程中的通讯效率,从而提高了联邦学习的效
基于差分隐私的联邦学习方法、装置及电子设备.pdf
本说明书实施例提供一种基于差分隐私的联邦学习方法及装置、电子设备,该方法应用于任一终端设备,包括多次迭代,每次迭代包括:基于训练数据和当前本地参数,确定待处理的第一梯度向量,该第一梯度向量的欧式范数小于等于预设范数,对第一梯度向量进行多级量化处理,得到第二梯度向量,在第二梯度向量的向量空间中,基于第二梯度向量,生成第一向量集合和第二向量集合,进行满足差分隐私的采样,以从第一向量集合或第二向量集合中随机采样出第三梯度向量。对第三梯度向量进行归一化,得到目标梯度向量,并向服务器上传目标梯度向量。能够提高联邦学
基于差分隐私的联邦学习数据隐私安全技术.pptx
汇报人:目录PARTONEPARTTWO差分隐私的定义差分隐私的原理差分隐私的优点和挑战PARTTHREE联邦学习的概念联邦学习中的数据隐私挑战差分隐私在联邦学习中的应用PARTFOUR差分隐私保护的联邦学习算法设计算法实现细节算法性能评估PARTFIVE医疗领域的应用金融领域的应用其他领域的应用案例分析:基于差分隐私的联邦学习在智能推荐系统中的应用PARTSIX基于差分隐私的联邦学习的研究方向技术发展趋势与展望面临的挑战与解决方案探讨THANKYOU
面向联邦学习的差分隐私保护方法及装置.pdf
本发明提供一种面向联邦学习的差分隐私保护方法及装置,该方法包括:获取参与当前轮学习的各个客户端上传的模型权重差;根据当前轮学习对应的裁剪参数,对所述各个客户端上传的模型权重差分别执行裁剪操作;对执行裁剪操作后的各个模型权重差进行聚合,并根据当前轮学习对应的高斯噪声分布对聚合后的模型权重差进行加噪处理,完成当前轮学习的模型更新;其中,当前轮学习对应的高斯噪声分布根据当前轮学习对应的噪声尺度和当前轮学习对应的裁剪参数确定,各轮次学习对应的噪声尺度随学习轮次的增加逐渐减小。能够使所加噪声贴合当前客户端上传的模型
基于本地差分隐私的边缘联邦图像分类方法.pdf
本发明提出一种基于本地差分隐私的边缘联邦图像分类方法,实现步骤为:构建边缘联邦学习系统;本地参与方获取训练样本集和测试样本集;参数服务器为每个本地参与方构建图像分类模型;本地参与方初始化训练参数;边缘服务器设置边缘更新参数;本地参与方对图像分类模型的权重参数进行本地优化;边缘服务器获取边缘更新后的结果并发送;参数服务器获取全局更新后的结果并发送;本地参与方获取图像分类结果。本发明在对权重参数进行本地差分隐私扰动上传的过程中,只选取部分参数扰动上传,减小了引入的噪声,提高了模型的精度,同时通过先执行边缘聚合