模型联合训练方法及装置.pdf
小长****6淑
亲,该文档总共25页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
模型联合训练方法及装置.pdf
本说明书实施例提供一种模型联合训练方法及装置,在训练方法中,接收模型训练任务的配置指令。该配置指令指示多个数据提供方中参与本次联合训练的各目标提供方以及本次联合训练所使用的目标模型。查询版本信息表,以确定各目标提供方各自部署的执行引擎的引擎版本信息。基于各目标提供方各自部署的执行引擎的引擎版本信息,判断目标模型是否为各目标提供方各自部署的执行引擎共同支持的公共模型,并在目标模型是公共模型的情况下,确定目标模型的公共版本。向各目标提供方发送联合训练请求,该联合训练请求指示各目标提供方通过各自部署的执行引擎加
模型联合训练方法及装置.pdf
本说明书实施例提供一种模型联合训练方法及装置,在训练方法中,接收模型训练任务的配置指令。该配置指令指示多个数据提供方中参与本次联合训练的各目标提供方以及本次联合训练所使用的目标模型。查询版本信息表,以确定各目标提供方各自部署的执行引擎的引擎版本信息。基于各目标提供方各自部署的执行引擎的引擎版本信息,判断目标模型是否为各目标提供方各自部署的执行引擎共同支持的公共模型,并在目标模型是公共模型的情况下,确定目标模型的公共版本。向各目标提供方发送联合训练请求,该联合训练请求指示各目标提供方通过各自部署的执行引擎加
保护隐私的模型联合训练方法及装置.pdf
本说明书实施例提供一种保护隐私的模型联合训练方及装置,在联合训练方法中,服务端发布模型训练任务。接收若干终端设备发送的参与请求。根据参与请求,查询贡献值列表,以获取若干终端设备各自的累计贡献值。基于查询得到的累计贡献值,从若干终端设备中选取各目标终端设备,并将初始模型拆分为对应于各目标终端设备的多个子模型。向各目标终端设备发送联合训练请求。该联合训练请求用于指示各目标终端设备,基于各自维护的、符合上述描述信息中至少部分描述信息的私有样本,在本地训练对应子模型。接收各目标终端设备发送的训练结果。根据各目标终
保护隐私的模型联合训练方法及装置.pdf
本说明书实施例提供了一种保护隐私的模型联合训练方法及装置。该联合训练由服务器和若干个终端共同进行,终端采用预测的随机化处理方式对训练所需的实际梯度进行处理,将得到的扰动梯度发送至服务器,使得服务器根据该扰动梯度得到训练后的模型的参数,而不是根据实际梯度得到训练后的模型参数。
业务模型的联合训练方法及装置.pdf
本说明书实施例提供一种业务模型的联合训练方法及装置,在多方联合训练业务模型过程中,为了使用牛顿法以更快的收敛速度训练业务模型,在确定海森矩阵的逆矩阵时,引入由可信第三方生成的辅助矩阵,由联合训练业务模型的各个业务方以秘密共享方式来确定海森矩阵与辅助矩阵的乘积,并各自得到相应份额。之后,公开海森矩阵与辅助矩阵的乘积的合并结果,使各个业务方分别得到以上合并结果的逆矩阵,进而确定海森矩阵的逆矩阵的相应份额。根据这种特定的业务方交互方式设置,使得多方安全计算中,在保证数据隐私的前提下,利用牛顿法调整模型参数具有可