预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共12页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

北京版八年级下册数学电子课本教材下载微信搜索关注公众号:查看完整版电子课本可微信搜索公众号,关注后对话框回复【8】获取八年级电子课本资源。八年级数学下册知识点变量与函数一、变量与常量1、变量:在某一变化过程中,可以取不同的数值,级数值发生变化的量,叫做变量。常量:在某一变化过程中,取值(数值)始终保持不变的量,叫做常量。2、注意事项:(1)常量和变量是相对的,在不同的研究过程中有些是可以相互转化的;(2)离开具体的过程抽象地说一个量是常量还是变量是不允许的;(3)在各种关于变量、常量的例子中,变量之间有一定的依赖关系。如三角形的面积,当底边一定时,高与面积之间是有关联的,不是各自随意变化。二、函数概念1、定义:在某个变化过程中,如果有两个变量x和y,对于x的每一个确定的值,y都有的值与其对应,那么,我们就说y是x的函数,其中x叫做自变量,y叫做因变量。2、对函数概念的理解,主要抓住三点:(1)有两个变量;(2)一个变量的数值随另一个变量的数值的变化而变化;(3)自变量每确定一个值,因变量就有一个并且只有一个值与其对应。三、函数的表示法:(1)列表法;(2)图象法;(3)解析法。四、求函数自变量的取值范围1.实际问题中的自变量取值范围按照实际问题是否有意义的要求来求。2.用数学式子表示的函数的自变量取值范围例1.求下列函数中自变量x的取值范围(1)解析式为整式的,x取全体实数;(2)解析式为分式的,分母必须不等于0式子才有意义;(3)解析式的是二次根式的被开方数必须是非负数式子才有意义;(4)解析式是三次方根的,自变量的取值范围是全体实数。3.函数值:指自变量取一个数值代入解析式求出的数值,称为函数值;实际上就是以前学的求代数式的值。函数的图象一、平面直角坐标系1、定义:平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。其中水平的数轴叫做横轴(或x轴),取向右为正方向;竖直的数轴叫做纵轴(y轴),取向上为正方向;两轴的交点O叫做原点。在平面内,原点的右边为正,左边为负,原点的上边为正,下边为负。2、坐标平面内被x轴、y轴分割成四个部分,按照“逆时针方向”分别为第一象限、第二象限、第三象限、第四象限注意:x轴、y轴原点不属于任何象限。3、平面直角坐标系中的点分别向x轴、y轴作垂线段,在x轴上垂足所显示的数称为该点的横坐标,在y轴上垂足所显示的数称为该点的纵坐标。点的坐标反映的是一个点在平面内的位置。写坐标的规则:横坐标在前,纵坐标在后,中间用“,”隔开,全部用小括号括起来。如P(3,2)横坐标为3,纵坐标为2。特别注意坐标的顺序不同,表示的就是不同位置的点。所以点的坐标是一对有顺序的实数,称为有序实数对。4、平面直角坐标系中的点与有序实数对一一对应。5、坐标的特征(1)在第一象限内的点,横坐标是正数,纵坐标是正数;在第二象限内的点,横坐标是负数,纵坐标是正数;在第三象限内的点,横坐标是负数,纵坐标是负数;在第四象限内的点,横坐标是正数,纵坐标是负数;(2)x轴上点的纵坐标等于零;y轴上点的横坐标等于零.6、对称点的坐标特征(1)关于x轴对称的两点:横坐标相同,纵坐标绝对值相等,符号相反;(2)关于y轴对称的两点:横坐标绝对值相等,符号相反,纵坐标相同;(3)关于原点对称的两点:横坐标绝对值相等,符号相反,纵坐标也绝对值相等,符号相反。(4)第一、三象限角平分线上点:横坐标与纵坐标相同;(5)第二、四象限角平分线上点:横坐标与纵坐标互为相反数。7、点到两坐标轴的距离点A(a,b)到x轴的距离为|b|,点A(a,b)到y轴的距离为|a|。二、函数的图象1、意义:对于一个函数,如果把自变量x与函数值y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形,就是这个函数的图象。2、作函数图象的方法:描点法。步骤:(1)列表;(2)描点;(3)连线。3、一般函数作图象,要求横轴和纵轴上的单位长度一定要一致,按照对应的解析式先计算出一对对应值,就是坐标,然后描点,再连线;画实际问题的图象时,必须先考虑函数自变量的取值范围.有时为了表达的方便,建立直角坐标系时,横轴和纵轴上的单位长度可以不一致。一次函数一、一次函数的概念之所以称为一次函数,是因为它们的关系式是用一次整式表示的。学习此概念要从两个方面来理解。(1)从其表达式上:一次函数通常是指形如:y=kx+b(k、b为常数,k≠0)的函数,凡是成这种形式的函数都是一次函数。而当b=0时,即y=kx(k≠0的常数),则称为正比例函数,其中k为比例系数。(2)从其意义上:它们表示的是两个变量之间的关系,这种函数关系具有特定的意义,如,如果说两各变量之间具有一次函数关系,我们就可按照概念设出函数关系式,成正比例关系的也同样,如,若s与t成正比例关系,我们便