预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共11页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

单相正弦波PWM逆变电路仿真报告1.仿真目的:通过对单相SPWM逆变电路不同控制方式的仿真研究,进一步理解SPWM控制信号的产生原理,单极性、双极性控制方式的原理及不同、载波比与调制深度不同对逆变电路输出波形的影响等。2.仿真原理:2.1单相桥式逆变电路图1所示为单相桥式逆变电路的框图,设负载为阻感负载。在桥式逆变电路中,桥臂的上下两个开关器件轮流导通,即工作时V1和V2通断状态互补,V3和V4的通断状态互补。下面将就单极性及双极性两种不同的控制方法进行分析。图1单相桥式PWM逆变电路2.2不同控制方式原理2.2.1单极性控制方式调制信号ur为正弦波,载波uc在ur的正半周为正极性的三角波,在ur的负半周为负极性的三角波。在ur的正半周,V1保持通态,V2保持断态,在ur>uc时使V4导通,V3关断,u0=Ud;在ur<uc时使V3导通,V4关断,u0=0;在ur的负半周,V1保持断态,V2保持通态,在ur<uc时使V3导通,V4关断,u0=-Ud;在ur>uc时使V4导通,V3关断,u0=0。这样就得到了SPWM波形u0。图2单极性PWM控制波形2.2.2双极性控制方式采用双极性方式时,在ur的半个周期内,三角波不再是单极性的,而是有正有负,所得的PWM波也是有正有负。在ur的一个周期内,输出的PWM波只有±Ud两种电平,而不像单极性控制时还有零电平。在ur的正负半周,对各开关器件的控制规律相同。即ur>uc时,给V1和V4导通信号,给V2和V3以关断信号,如i0>0,则V1和V4通,如i0<0,则VD1和VD4通,不管哪种情况都是输出电压u0=Ud。ur<uc时,给V2和V3导通信号,给V1和V4以关断信号,这时如i0<0,则V2和V3通,如i0>0,则VD2和VD3通,不管哪种情况都是输出电压u0=-Ud。图3双极性PWM控制波形3.仿真过程:3.1仿真主电路模型:仿真模型如图4所示,其中的PWM模块为根据不同控制方式自定义的子系统封装模块,设置该模块的参数为m(调制深度)、f(调制波频率)、fc(载波频率),方便仿真时快捷调整调制深度及载波比,来观察不同参数对逆变电路输出的影响。图4仿真主电路图中的“UniversalBridge”模块,在对话框中选择桥臂数为2,即可组成单相全桥电路,开关器件选带反并联二极管的IGBT;直流电压源模块设置为300V;“SeriesRLCBranch”模块去掉电容后将阻感负载分别设为1Ω和2mH;在串联RLC支路模块的对话框下方选中测量电压和电流,再利用“Multimeter”模块即可观察逆变器的输出电压、电流;“Powergui”模块设置为离散仿真模式,采样时间为1e-5s。仿真时间设为0.06s,选择ode45仿真算法。3.2单极性PWM逆变仿真3.2.1单极性PWM控制信号产生原理在本仿真中,采用同幅值、同频率的两条等腰三角载波分别与同幅值、同频率,但相位相差180°的两条正弦调制波比较,经过处理后得到PWM控制信号,原理如图5所示。由于两个桥臂是分开控制的同一桥臂上的两个开关在控制上仍然互补。在输出电压的半个周期内,电压极性只在一个方向变化,故称为单极性控制。图5单极性PWM控制信号产生原理3.2.2单极性控制仿真模型图6单极性PWM控制信号产生模型在图6中,正弦波m*sin⁡(2πft)以及m*sin⁡(2πft+π)由模块组合产生,与频率为fc的等腰三角波比较后,经过处理产生单极性PWM控制信号。3.2.3进行仿真及波形记录(1)调制深度m设为0.5,基波频率f设为50Hz,载波频率fc设为基频的20倍,即1000Hz。运行仿真主电路,可得输出电压、负载电流、直流侧电流如图7所示。图7m=0.5,fc=1000Hz时单极性PWM逆变电路输出波形对此时的输出电压及负载电流进行FFT分析,结果如图8所示。输出电压基波幅值为150.4V,与理论值很接近,约为基波幅值的50%。其THD为124.27%。而由于感性负载的存在,负载电流的THD为4.97%。图8m=0.5,fc=1000Hz时单极性输出电压FFT分析结果仿真(2)在(1)的基础上,将调制深度m改为1,其它参数不变,仿真后可得此时输出电压、负载电流及直流侧输电流波形如图9所示。图9m=1,fc=1000Hz时单极性PWM逆变电路输出波形对此时的输出电压及负载电流进行FFT分析,结果如图10所示。输出电压基波幅值为300.1V,与理论值非常接近,其THD降为52.16%。而同样由于感性负载的存在,负载电流的THD为1.99%,比(1)中降低很多。图10m=1,fc=1000Hz时单极性输出电压FFT分析结果仿真(3)在(2)的基础上将载波频率提高到fc=2000Hz.仿真后,得到此时的输出电压,负载电流及直流侧电流波形如图