预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第PAGE页码2页/总页数NUMPAGES总页数2页控制图原理及应用简介控制图原理及应用简介控制图的基本原理质量特性数据具有波动性,在没有进行观察或测量时,一般是未知的,但其又具有规律性,它是在一定的范围内波动的,所以它是随机变量。一、正态分布如果随机变量受大量独立的偶然因素影响,而每一种因素的作用又均匀而微小,即没有一项因素起特别突出的影响,则随机变量将服从正态分布。正态分布是连续型随机变量最常见的一种分布。它是由高斯从误差研究中得出的一种分布,所以也称高斯分布。随机变量服从正态分布的例子很多。一般来说,在生产条件不变的前提下,产品的许多量度,如零件的尺寸、材料的抗拉强度、疲劳强度、邮件的内部处理时长、随机测量误差等等都是如此。定义若随机变量的概率密度函数为:则称的分布为正态分布,记为正态分布的概率密度函数如图5—1所示。图5l正态分布概率密度曲线从图中我们叫以看出正态分布有如下性质:(1)曲线是对称的,对称轴是x=μ;(2)曲线是单峰函数,当x=μ时取得最大值;(3)当曲时,曲线以x轴为渐近线;(4)在处,为正态分布曲线的拐点;(5)曲线与x轴围成的面积为1。数字特征值的意义:平均值μ规定了图形所在的位置。根据正态分布的性质,在x=μ处,曲线左右对称且为其峰值点。标准偏差,规定了图形的形状。图52给出了3个不同的值时正态分布密度曲线。当小时,各数据较多地集中于μ值附近,曲线就较“高”和“瘦”;当大时,数据向μ值附近集中的程度就差,曲线的形状就比较“矮”和“胖”。这说明正态分布的形状由的大小来决定。在质量管理中,反映了质量的好坏,越小,质量的一致性越好。图52大小不同时的正态分布在正态分布概率密度函数曲线下,介于间的面积,分别占总面积的58.26%,95.45%,99.73%和99.99%。它们相应的几何意义如图53听示。图53各种概率分布的几何意义二、控制图的轮廓线控制图是画有控制界限的一种图表。如图54所示。通过它可以看出质量变动的情况及趋势,以便找出影响质量变动的原因,然后予以解决。图54控制图我们已经知道:在正态分布的基本性质中,质量特性数据落在[μ±3]范围内的概率为99.73%,落在界外的概率只有0.27%,超过一侧的概率只有0.135%,这是一个小概率事件。这个结论非常重要,控制图正是基于这个结论而产生出来的。现在把带有μ±3线的正态分布曲线旋转到一定的位置(即正态分布曲线向右旋转9,再翻转),即得到了控制图的基本形式,再去掉正态分布的概率密度曲线,就得到了控制图的轮廓线,其演变过程如图55所示。图5—5控制图轮廓线的演变过程通常,我们把上临界线(图中的μ+3线)称为控制上界,记为UCL(UpperControlLimit),平均数(图中的μ线)称为中心线,记为CL(CentralLine),下临界线(图中μ3线)称为控制下界,记为LCL(LowerControlLimit)。控制上界与控制下界统称为控制界限。按规定抽取的样本值用点子按时间或批号顺序标在控制图中,称为描点或打点。各个点子之间用实线段连接起来,以便看出生产过程的变化趋势。若点子超出控制界限,我们认为生产过程有变化,就要告警。三、两种错误和3方式从前面的论述中我们已知,如果产品质量波动服从正态分布,那么产品质量特性值落在μ土3控制界限外的可能性是0.27%,而落在一侧界限外的概率仅为0.135%。根据小概率事件在一次实验中不会发生的原理,若点子出界就可以判断生产有异常。可是0.27%这个概率数值虽然很小,但这类事件总还不是绝对不可能发生的。当生产过程正常时,在纯粹出于偶然原因使点子出界的场合,我们根据点子出界而判断生产过程异常,就犯了错发警报的错误,或称第一种错误。这种错误将造成虚惊一场、停机检查劳而无功、延误生产等损失。为了减少第一种错误,可以把控制图的界限扩大。如果把控制界限扩大到μ±4,则第一种错误发生的概率为0.006%,这就可使由错发警报错误造成的损失减小。可是,由于把控制界限扩大,会增大另一种错误发生的可能性,即生产过程已经有了异常,产品质量分布偏离了原有的典型分布,但是总还有一部分产品的质量特性值在上下控制界限之内,参见图56。如果我们抽取到这样的产品进行检查,那么这时由于点子未出界而判断生产过程正常,就犯了漏发警报的错误,或称第二种错误。这种错误将造成不良品增加等损失。图56控制图的两种错误要完全避免这两种错误是不可能的,一种错误减小,另一种错误就要增大,但是可以设法把两种错误造成的总损失降低到最低限度。也就是说,将两项损失之和是最小的地方,取为控制界限之所在。以μ±3为控制界限,在实际生产中广泛应用时,两种错误造成的总损失为最小。如图57所示。这就是大多数控制图的控制界限都采用μ±3方式的理由。图5—7两种错误总损失最