预览加载中,请您耐心等待几秒...
1/9
2/9
3/9
4/9
5/9
6/9
7/9
8/9
9/9

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

本发明属于数据分析领域与机器学习领域,具体涉及一种基于机器学习的智能课程推荐方法。包括以下步骤:步骤1、数据的探索性分析:对所需分析的课程数据进行统计性分析、单数据项可视化分析以及多数据项之间的相关性分析;步骤2、构建k?means聚类算法:构建SEE?K图对输入的特征数据进行聚类,结果为标签数据;步骤3、基于特征数据和标签数据训练DNN分类预测模型;步骤4、基于历史特征数据预测,生成预测标签,利用可视化手段与数学评价指标评价分类模型性能;步骤5、根据预测结果与聚类结果进行课程推荐。本发明用无标签的课程数据集,经过聚类和分类算法实现了智能课程推荐功能,充分利用了k?means算法适用性广与DNN拟合能力强的优势,提高了预测精度。