预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

伪随机序列的设计与分析随着通信和信息技术的发展,二元伪随机序列在通信学,密码学,雷达测距等方面都得到了广泛的应用.故而也带动了对伪随机序列的研究兴趣.本文的研究内容主要包含以下三个方面:伪随机序列集的设计,伪随机序列的2-adic复杂度和线性复杂度,以及环上序列的压缩映射.本文得到的结果可概括如下(一)在序列集的设计方面,本文构造了一类低相关区域序列集和一类低相关值序列集.(1)设计低相关区域序列集的方法主要是通过修改理想两值自相关序列的部分比特来获得新的序列.而且新构造的低相关区域序列集能达到Tang-Fan-Matsufuji界.和以前的构造相比,该设计第一次给出了具有两个自由参数的低相关区域序列集.(2)设计低相关值序列集的思想主要是源自于对Bent序列集的推广.首先推广了Bent函数的概念,提出了类-Bent函数.然后基于正交的类-Bent函数,构造了一类低相关值序列集.该构造给出的序列集具有较高的线性复杂度.(二)在序列的安全性指标方面,本文主要研究了最优自相关序列的2-adic复杂度以及两类交织序列的线性复杂度和2-adic复杂度.(1)首先,提出了一个计算二元序列2-adic复杂度的新方法.利用这个新方法,证明了所有已知的理想两值自相关序列的2-adic复杂度都等于它们的周期.该方法还证明了周期为N(三1mod4)的Legendre序列和Ding-Helleseth-Lam序列的2-adic复杂度也达到了最大.最后,还利用该方法确定了理想两值自相关序列在几乎所有奇素数域上的线性复杂度.(2)其次,研究了两类交织序列的极小多项式和线性复杂度.一类是Zhou等人[88]构造的低相关区域序列,而另一类是Tang等人[72]构造的最优自相关序列.利用这些序列的交织结构,完全确定了几类低相关区域序列的线性复杂度.但是本文仅在一些特定条件下确定了Tang等人构造的最优自相关序列的线性复杂度.这些结论部分回答了Li和Tang提出来的开问题.(3)最后,研究了前述两类交织序列的2-adic复杂度.也是利用这些序列的交织结构,完全确定了它们的2-adic复杂度和极小生成数.(三)在环上序列方面,本文研究了一类压缩映射的保熵性.令φ(x0,x1,…,xe-1)=g(xe-1)+μ(x0,x1,…,xe-2)表示Fpe到Fp的一个多变元多项式函数.那么φ可以诱导出一个G’(f(x),pe)到Fp∞的压缩映射.已有文献证明,当f(x)是强本原多项式时,该压缩映射是保熵的.本文证明了,当deg(g)为奇数或者g(x)=xk+∑i-0k-2cixi时,只需f(x)是本原多项式,就能保证该压缩映射是保熵的.