几类脉冲微分方程的周期解及其分支.doc
曾琪****是我
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
几类脉冲微分方程的周期解及其分支.doc
几类脉冲微分方程的周期解及其分支本文讨论了在Moebius带上的一维脉冲微分方程其周期解的存在性,稳定性以及分支.利用后继函数得到一些充分条件保证了单侧周期闭轨与双侧周期闭轨的存在性和稳定性.同时,利用Poincaxe映射来研究双周期分支.本文研究了某一类平面脉冲动力系统的稳定性及其分支.这里主要用到的工具方法是Poincare映射和后继函数.同时,我们将给出例子来说明脉冲效应在相平面上如何影响其轨迹的结构.
几类脉冲微分方程的周期解及其分支的任务书.docx
几类脉冲微分方程的周期解及其分支的任务书标题:脉冲微分方程周期解及其分支的研究一、引言(约200字)脉冲微分方程是研究物理、工程、生物等领域中的许多现象和过程的重要数学工具。周期解是脉冲微分方程中一类重要的解,具有一定的稳定性和周期性。本文旨在研究几类脉冲微分方程的周期解及其分支,探索其在实际问题中的应用价值。二、脉冲微分方程的基本概念与模型建立(约200字)介绍脉冲微分方程的基本概念,包括脉冲函数、脉冲微分方程的定义与性质。针对特定实际问题,建立相应的脉冲微分方程模型。三、一类常见的脉冲微分方程(约30
几类非线性脉冲微分方程的解及其最优控制的中期报告.docx
几类非线性脉冲微分方程的解及其最优控制的中期报告尊敬的老师:非线性脉冲微分方程在许多实际问题中起着重要作用。在过去的几个月中,我们团队研究了几类非线性脉冲微分方程的解及其最优控制问题。以下是我们的中期报告。1.基本概念介绍脉冲微分方程是一类特殊的微分方程,其解在某些时刻会发生跳跃。非线性脉冲微分方程是指方程中包含非线性项的情况。最优控制问题是指在一定的限制条件下,寻找使某种性能指标最小的控制参数。2.研究进展我们的研究主要集中在以下几类非线性脉冲微分方程的解及其最优控制问题。(1)具备指数增长的非线性脉冲
几类微分方程的概周期解.pptx
汇报人:目录PARTONEPARTTWO概周期函数的定义概周期函数的性质概周期解的存在性定理PARTTHREE一阶常微分方程的求解方法高阶常微分方程的求解方法偏微分方程的求解方法PARTFOUR在物理中的应用在工程中的应用在生态学中的应用PARTFIVE国内外研究现状研究展望与未来发展方向当前研究的挑战与机遇PARTSIX研究成果总结对未来研究的建议与展望THANKYOU
几类具有脉冲的时滞泛函微分方程周期解的研究的中期报告.docx
几类具有脉冲的时滞泛函微分方程周期解的研究的中期报告这篇中期报告主要介绍几类具有脉冲的时滞泛函微分方程的周期解研究进展,包括具有单个脉冲的方程、具有多个脉冲的方程、以及具有分布时滞的方程等。1.具有单个脉冲的方程针对具有单个脉冲的时滞泛函微分方程,研究者们主要是探讨了周期解的存在性和稳定性。研究表明,对于一定范围内的参数取值,该类方程存在唯一正周期解,并且解的稳定性得到了证明。同时,也研究了该类方程的周期解与初值的关系,得到了一些有关初值对周期解的影响的结论。2.具有多个脉冲的方程相对于具有单个脉冲的方程