预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

产气肠杆菌暗发酵及其与光合细菌联合制氢工艺研究生物发酵制氢技术有着广阔的发展前景,然而就现阶段来说,无论是暗发酵制氢技术还是光合发酵制氢技术均存在各自的不足和局限。能量转化效率低,制氢成本高,极大地制约了生物制氢,尤其是以农作物秸秆等纤维素类生物质能为原料的生物发酵制氢技术的发展潜力;我国的秸秆等生物质来源广泛,资源丰富,却不能直接用于发酵产氢,必须经过高成本的酶解或结合其他理化方法的预处理之后才能产氢,这是是秸秆等纤维素类生物质产氢经济性的重要制约因素。而通过选定高效产氢菌株,结合暗发酵和光合制氢两种制氢技术各自的工艺优点,得到一系列最优工艺参数,以提高生物制氢技术的产气速率和氢气转化率,将能够为打破纤维素类生物质产氢局限,得到可以经济高效型产氢的组合微生物,及对应配套的工艺条件,为生物制氢技术从理论研究向产业化应用转变提供助力。本论文是在国家自然科学基金项目“生物质多相流光合产氢过程调控机理及光热传输特性研究(编号:51376056)”的资助下完成。选择高效暗发酵菌株产气肠杆菌(Enterobacteraerogenes)和本课题组筛选保藏的HAU-M1高效光合细菌作为产氢菌种,进行暗发酵和光发酵的联合制氢技术研究。通过对产气肠杆菌进行富集培养,在得到了其基本的生长规律和最适发酵条件后用于发酵产氢,以总产氢量和产氢速率作为主要的评价指标,优化了产气肠杆菌利用葡萄糖暗发酵产氢的工艺参数;并对其发酵反应液中的挥发性脂肪酸成分进行了液相分析;分灭菌和不灭菌两种处理方式,通过一系列的前处理后,继续用于光合制氢;分析暗发酵反应液以及产气肠杆菌活菌菌体对光合细菌发酵产氢的影响;并进一步研究产气肠杆菌与光合细菌之间的生物加强作用;同时对产气肠杆菌利用不同前处理条件下的玉米秸秆的发酵产氢能力进行了比较分析。结果表明:(1)有机态氮存在的条件下,最适于产气肠杆菌的生长繁殖,可以在第28小时开始到达对数期。产气肠杆菌在纯培养条件下具有很好的的耐酸性,耐酸范围在pH7至pH4.5之间,这对连续产氢过程非常有利;不同工艺条件下产气肠杆菌的发酵产氢的周期差别较大,在68h至156h之间;产气肠杆菌发酵产氢周期可达最短为68h的最优化发酵工艺条件为温度35℃、pH值6.5、碳氮质量比3,其氢气产率为261.5ml/gG、氢气转化率为2.1molH2/molG。(2)产气肠杆菌暗发酵残液主要为甲酸、乙醇和乙酸等,丁酸的含量较少,这对后续光合细菌的利用有利。光合产氢结束后乙酸量大大降低,说明光合细菌优先利用的小分子酸主要是乙酸。灭菌处理发酵残液进一步用于联合光合的产氢的实验表明,发酵残液的加入对产氢量的提高有益,总产气量和产氢量均随着发酵残液加入量的增加而增加;未经灭菌处理发酵液的加入对产氢量的影响则是:低添加量时,总产气量和产氢量随着发酵残液加入量的增加而增加。但当其添加量提高到50%时,产气量反而减少。灭菌之后的暗发酵反应液对产氢系统的动态pH值有一定的影响,普遍降低0.7左右;加入含有产气肠杆菌活菌菌体发酵残液的实验组,由于产气肠杆菌的代谢以及小分子酸的增加,使其pH值降低2.2左右,随着后续产氢反应的进行,乙酸等逐渐被分解代谢掉,pH值又逐渐回升,至6.0左右。(3)产气肠杆菌的生物加强作用研究表明,加强组A的产氢延迟期缩短,12h后即开始产气,发酵周期也缩短至5.5d,产氢速率快,所产气体中氢气的百分含量提高,达到51%,随后随着碳源和酸碱环境的改变,以及菌体的老化而终止。产气量相对于光合对照组提高了20.3%,氢气产量提高了49.6%。加强组B的发酵周期短至4.0d,这主要是由于碳源的耗尽,而终止了产氢。加强组B作为加强组A组的二分之一碳源对照,与加强组A相比,其的总产气量并不是同比例少了一半,而是相对于A组的一半提高了30.5%,氢气产量提高了28.0%。说明低碳源浓度对产气肠杆菌和光合细菌的生物加强作用有利。(4)产气肠杆菌对玉米秸秆有一定的直接利用能力,但其利用效率不高,利用能力有限。相对来说,经过预混处理和酶解处理的玉米秸秆具有更好的产氢效果,其总产气量和总产氢量均高于未处理组,以酶解处理效果最好;但产气肠杆菌利用酶解后秸秆所得到的总产气量比利用当量葡萄糖的总产气量稍少,但利用酶解秸秆所产生的气体中,氢气的比重远低于葡萄糖组。