预览加载中,请您耐心等待几秒...
1/5
2/5
3/5
4/5
5/5

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

Web数据挖掘在电子商务的应用论文Web数据挖掘在电子商务的应用论文1电子商务中的数据挖掘简介电子商务中的数据挖掘即Web挖掘,是利用数据挖掘技术从www的资源(即Web文档)和行为(即Web服务)中自动发现并提取感兴趣的、有用的模式和隐含的信息,它是一项综合技术,涉及到Internet技术学、人工智能等多个领域。当电子商务在企业中得到应用时,企业信息系统将产生大量数据,并且迫切需要将这些数据转换成有用的信息,为企业创造更多潜在的利润,数据挖掘概念就是从这样的商业角度开发出来的。2Web数据挖掘的流程Web数据挖掘是对商业数据库中的大量业务数据进行抽取、转换、分析和其他模型化处理,从中提取商业决策的关键性数据,可以使企业把数据转化为有用的信息帮助决策,从而在市场竞争中获得优势地位。在电子商务环境下,Web数据挖掘主要分为以下几步:(1)数据收集。首先数据收集主要针对web数据中的服务器数据、用户数据。其中服务器数据是Web挖掘中的主要对象。服务器中承载着用户访问时产生的对应的服务数据,其中包括了:日志文件、cookie文件、数据流。将这些数据进行初步收集,再针对这些数据进行深度分析挖掘。(2)数据选择和预处理。通过数据收集将数据进行分类,根据所需的信息主题对收集的数据进行选择,通过选择相关的数据项缩小数据处理的范围,挑选其中的有效数据进行数据预处理。数据预处理能够提高挖掘效率,为之后的数据分析提供有效的数据。Web数据中大多数都是半结构或非结构化的,所以对web数据进行直接处理是不可行的。数据预处理能够把半结构或非结构化的数据处理成标准的数据集方便后期处理。(3)模式发现。模式发现是运用各种方法,发现数据中隐藏的模式和规则。通过模式发现技术对预处理之后的数据进行处理得到相应的事务数据库,利用模式发现对数据进行初步挖掘,将预处理下的事务数据转换成可被挖掘的存储方式,通过数据挖掘模式算法对其中有效的、新奇的、有用的及最终可以理解的信息和知识进行挖掘与总结。(4)模式分析。模式分析主要是采用合适的技术和工具,对挖掘结果进行模式的分析,其目的是根据实际应用,通过观察和选择,把发现的统计结果、规则和模型转换为知识,经过筛选后来指导实际的电子商务行为。3电子商务中的数据挖掘技术(1)路径分析技术。路径分析主要是对web访问路径进行搜索分析,对于频繁访问的路径进行总结。利用Web服务器的日志文件进行数据分析,对访客次数以及对应路径进行分析挖掘出频繁访问路径。通过数据可以分析出大多数访问者的共同喜好,从而能够帮助电子商务改进web设计以及提供更好更符合客户的服务。(2)关联分析技术。关联技术是通过对数据进行分析寻找出隐藏的数据联系,关联分析可是对单纯的web数据与对应的电子商务进行联系。从而可以在web数据挖掘中得到该商务网站的关联原则和信息。从而更好的使得客户和网站数据有之间的相互联系。(3)聚类分析技术。聚类分析是根据对象进行数据分析了之后,对数据的信息和客户对象之间的关系进行总结。对数据对象进行分组成为多个类或簇,按照数据对象之间的相似度进行划分。(4)分类分析技术。分类分析是通过对数据库中样本数据的分析,对每个类别做出准确的描述或分析模型或挖掘分类规则。分类分析是电子商务中一个非常重要的任务,也是应用最广泛的技术。通过分类自动推导给定数据的广义描述,以便对未来数据进行预测。4Web数据挖掘技术在电子商务中的应用(1)制定优质个性化服务。电子商务的发展给了人们更多元化的选择,同时,电商网站经营的商品也在不断增加,在这样多元化的网站结构中想要快速找到符合自己的商品必定会是一个繁琐的过程。然而通过数据挖掘对浏览量、购买力、搜索强度进行合理应用,针对数据分析结果对网站进行制定优质的个性化服务设计,更合理的安排网站中的物品摆放,从而为用户提供更个性化的`服务。(2)优化站点设计。Web设计者可通过挖掘用户的Web日志文件,对Web站点的结构和外观进行设计和修改。网站网页的内容设置直接影响网站的访问效率。网站管理员按照大多数访问者的浏览模式对网站进行组织,尽量为大多数访问者的浏览提供方便,给客户留下好的印象,增加下次访问的机率。(3)聚类客户。在电子商务中,聚类客户就是主要的运营策略,可以对客户浏览的信息等内容出发,对客户的共性进行分类,从而让电子商务的运营者能更加全面的了解客户的需要,对网页的内容进行适当的调整,并在多方面满足客户的内在需要,尽最大限度的为客户提供优质的、合适的服务。(4)营销效益分析。利用web数据挖掘对商品访问和销售情况进行有效分析,这样能够确定一些营销及消费的生命周期。再者结合目前的市场变化,针对不同的产品进行定制独特的营销策略。数据挖掘能够有助于提高电商的营销效益。5结语综上所述,web数据挖掘在电子商务的应用越来越广泛