一种基于卷积神经网络的电池健康状态评估方法.pdf
小代****回来
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
一种基于卷积神经网络的电池健康状态评估方法.pdf
本发明涉及电池健康状态评估技术领域,公开了一种基于卷积神经网络的电池健康状态评估方法,包括以下步骤:步骤1:提取数个满充状态下的充电片段数据;步骤2:修正充电片段数据的SOC值;并计算每一个充电片段数据对应的SOH值;步骤3:截取各充电片段数据中相同电压区间内的单体电压数据作为输入值,并输入至初始评估模型中;所述初始评估模型为端到端的模型;步骤4:利用步骤3中的输入值,计算损失函数并进行反向传播以更新权重参数,直到迭代完成;迭代完成后获得标准评估模型;步骤5:将待评估电池的充电片段数据输入至标准评估模型中
基于神经网络、迁移集成学习的锂电池健康状态评估方法.pdf
基于神经网络、迁移集成学习的锂电池健康状态评估方法,它涉及一种锂电池健康状态评估方法。本发明为了解决现有锂电池健康评估方法由于训练数据集不充分,导致无法获得良好预测精度的问题。本发明的具体步骤为:步骤一、根据现有电池S在完整充放电过程中记录的数据集;步骤二、恒流阶段电压、恒压电流阶段、容量增量和电池与环境的温差作为输入;步骤三、针对新电池T,进行n次充放电过程中并记录其参数数据集;步骤四、迁移学习从数据集充足的电池S学习到的CNN参数模型来帮助训练数据集不足的目标任务电池T;步骤五、利用集成学习将两个CN
基于卷积自编码神经网络的锂离子电池健康状况评估方法研究.pptx
添加副标题目录PART01PART02锂离子电池的应用领域锂离子电池健康状况对性能的影响锂离子电池健康状况评估的必要性PART03卷积神经网络的基本原理自编码神经网络的基本原理卷积自编码神经网络的优势和应用PART04数据采集和处理卷积自编码神经网络的构建和训练锂离子电池健康状况的预测和评估方法的有效性和可行性分析PART05实验设计和方法实验结果和数据分析结果与现有方法的比较和分析方法改进和优化的建议PART06研究结论和贡献研究局限性和不足之处未来研究的方向和展望感谢您的观看
基于卷积神经网络的内窥镜评估方法及评估系统.pdf
本发明公开了一种基于卷积神经网络的内窥镜评估方法及评估系统。所述内窥镜评估方法包括:获取内窥镜的评估图像;获取所述评估图像中的特征目标及其位置信息;计算所述评估图像中不同种类的特征目标之间的距离,以及同一种类特征目标出现的比例,对所述特征目标进行特征过滤;对通过所述特征过滤的特征目标进行连续计时,获取评估结果,用于指示所述内窥镜是否正常。本发明所提供的内窥镜评估方法及评估系统能够准确的判断内窥镜术前准备是否完成喷气喷水检查准备工作,并准确给出是否通过术前准备工作的指示,避免术中因术前准备不足的原因而导致手
基于充电数据和LSTM神经网络的电池健康状态估计方法.pdf
本发明涉及一种基于充电数据和LSTM神经网络的电池健康状态估计方法,包括:构建原始数据集;对数据集进行预处理;对数据集中的输入数据进行特征提取;对输入特征与目标值进行相关系数分析;构建神经网络模型结构;训练神经网络模型;优化神经网络模型;评估神经网络模型并将其嵌入电池管理系统;电池健康状态在线估计。本发明通过使用比较稳定的充电数据对电池SOH进行估计,将输入数据的进行降维处理,同时也将输入数据与输出数据之间进行相关性分析,既提高了电池SOH估计网络模型的运算速度,又提高了电池SOH估计的精度。