预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共110页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

卷积神经网络CNN从入门到精通HYPERLINK"http://www.cnblogs.com/fengfenggirl/p/cnn_implement.html"卷积神经网络算法的一个实现前言从理解卷积神经到实现它,前后花了一个月时间,现在也还有一些地方没有理解透彻,CNN还是有一定难度的,不是看哪个的博客和一两篇论文就明白了,主要还是靠自己去专研,阅读推荐列表在末尾的参考文献。目前实现的CNN在MINIT数据集上效果还不错,但是还有一些bug,因为最近比较忙,先把之前做的总结一下,以后再继续优化。卷积神经网络CNN是DeepLearning的一个重要算法,在很多应用上表现出卓越的效果,HYPERLINK"http://www.cnblogs.com/fengfenggirl/p/cnn_implement.html"\l"refren1"[1]中对比多重算法在文档字符识别的效果,结论是CNN优于其他所有的算法。CNN在手写体识别取得最好的效果,HYPERLINK"http://www.cnblogs.com/fengfenggirl/p/cnn_implement.html"\l"ref2"[2]将CNN应用在基于人脸的性别识别,效果也非常不错。前段时间我用BP神经网络对手机拍照图片的数字进行识别,效果还算不错,接近98%,但在汉字识别上表现不佳,于是想试试卷积神经网络。1、CNN的整体网络结构卷积神经网络是在BP神经网络的改进,与BP类似,都采用了前向传播计算输出值,反向传播调整权重和偏置;CNN与标准的BP最大的不同是:CNN中相邻层之间的神经单元并不是全连接,而是部分连接,也就是某个神经单元的感知区域来自于上层的部分神经单元,而不是像BP那样与所有的神经单元相连接。CNN的有三个重要的思想架构:局部区域感知权重共享空间或时间上的采样局部区域感知能够发现数据的一些局部特征,比如图片上的一个角,一段弧,这些基本特征是构成动物视觉的基础HYPERLINK"http://www.cnblogs.com/fengfenggirl/p/cnn_implement.html"\l"ref3"[3];而BP中,所有的像素点是一堆混乱的点,相互之间的关系没有被挖掘。CNN中每一层的由多个map组成,每个map由多个神经单元组成,同一个map的所有神经单元共用一个卷积核(即权重),卷积核往往代表一个特征,比如某个卷积和代表一段弧,那么把这个卷积核在整个图片上滚一下,卷积值较大的区域就很有可能是一段弧。注意卷积核其实就是权重,我们并不需要单独去计算一个卷积,而是一个固定大小的权重矩阵去图像上匹配时,这个操作与卷积类似,因此我们称为卷积神经网络,实际上,BP也可以看做一种特殊的卷积神经网络,只是这个卷积核就是某层的所有权重,即感知区域是整个图像。权重共享策略减少了需要训练的参数,使得训练出来的模型的泛华能力更强。采样的目的主要是混淆特征的具体位置,因为某个特征找出来后,它的具体位置已经不重要了,我们只需要这个特征与其他的相对位置,比如一个“8”,当我们得到了上面一个"o"时,我们不需要知道它在图像的具体位置,只需要知道它下面又是一个“o”我们就可以知道是一个'8'了,因为图片中"8"在图片中偏左或者偏右都不影响我们认识它,这种混淆具体位置的策略能对变形和扭曲的图片进行识别。CNN的这三个特点是其对输入数据在空间(主要针对图像数据)上和时间(主要针对时间序列数据,参考HYPERLINK"http://en.wikipedia.org/wiki/Time_delay_neural_network"\t"_blank"TDNN)上的扭曲有很强的鲁棒性。CNN一般采用卷积层与采样层交替设置,即一层卷积层接一层采样层,采样层后接一层卷积...这样卷积层提取出特征,再进行组合形成更抽象的特征,最后形成对图片对象的描述特征,CNN后面还可以跟全连接层,全连接层跟BP一样。下面是一个卷积神经网络的示例:图1(HYPERLINK"http://www.cnblogs.com/fengfenggirl/p/cnn_implement.html"\l"refren1"图片来源)卷积神经网络的基本思想是这样,但具体实现有多重版本,我参考了matlab的DeepLearning的工具箱HYPERLINK"https://github.com/rasmusbergpalm/DeepLearnToolbox"DeepLearnToolbox,这里实现的CNN与其他最大的差别是采样层没有权重和偏置,仅仅只对卷积层进行一个采样过程,这个工具箱的测试数据集是MINIST,每张图像是28*28大小,它实现的是下面这样一个CNN:图22、