一种基于图深度学习的文本多标签分类方法和系统.pdf
邻家****66
亲,该文档总共13页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
一种基于图深度学习的文本多标签分类方法和系统.pdf
本发明公开了基于图深度学习的文本多标签分类方法和系统,在金融领域少标注样本且标签间存在业务关联的前提下,依靠基于图深度学习的文本分类方法,自动化解决文本多标签分裂问题。其技术方案为:对原始采集数据进行预处理并进行文本向量化的处理,基于中文分词后转化为文本向量;对文本向量化结果,使用多标签注意力网络提取文本特征,最终得到文本特征提取结果;在文本特征提取的基础上,构建图语义交互层,得到融合图语义交互层的混合文本向量化的结果;在融入语义交互层的文本向量化表示基础上,采用特定损失函数训练模型进行训练,得到输入文本
一种文本多标签分类方法及系统.pdf
本发明公开了一种文本多标签分类方法及系统,方法包含:获取目标文本数据及其标注标签并处理得到文本数据及其标注标签;将文本数据进行数据增广;对增广后的文本数据及其标注标签构建深度学习模型;将待处理数据输入深度学习模型中获取待处理数据的标签数据;对标签数据进行判别处理得到待处理数据的标注标签;系统包含数据处理模块获取目标文本数据及其标注标签并处理得到文本数据及其标注标签;数据增广模块对文本数据进行数据增广;深度学习模型构建模块用于构建深度学习模型,还用于获取待处理数据并输入深度学习模型中获取待处理数据的标签数据
一种基于softmax的文本多标签分类方法.pdf
本发明提供一种基于softmax的文本多标签分类方法,包括:文本预处理、文本特征向量提取、模型设计、模型训练、模型评估、模型应用,本发明使用bert模型提取句子特征向量,在使用双向门控循环单元和注意力模型构建训练网络,网络使用softmax作为激活函数而非sigmoid,同时使用配合softmax的改良交叉熵损失函数,提高负样本的学习效率,“softmax+交叉熵”没有类别不均衡的问题,因为它不是将多标签分类变成多个二分类问题,而是变成目标类别得分与非目标类别得分的两两比较,并且能够借助于LogSumEx
基于深度学习的乘客多标签分类方法、系统、介质及设备.pdf
本发明提供了一种基于深度学习的乘客多标签分类系统、方法、介质及设备,包括:图像数据采集模块:获取监控视频并转码播放,调用目标检测算法进行人员检测并截取乘客图像;属性数据集建立及处理模块:建立乘客属性数据集并遍历校对图像和标签,分别提取图像和标签列表并将标签转化为独热码;乘客属性识别模块:加载图像并预处理、加载属性标签并重排,划分数据集,配置深度神经网络模型参数并训练,进行模型预测,在图像层面和属性层面计算评价指标;结果显示和保存模块:构建背景和预测字典,打印属性识别和评价结果并保存。本发明可实现重点乘客识
基于深度对比学习的不完备多视图多标签分类方法和系统.pdf
本发明公开了一种基于深度对比学习的不完备多视图多标签分类方法、系统及存储介质。方法包括:构建、训练不完备多视图多标签分类网络模型;将测试数据输入训练好的不完备多视图多标签分类网络模型进行推理,输出预测标签;其中,不完备多视图多标签分类网络模型包括特定视图表示学习框架、不完备实例级对比学习模块和加权融合与不完备多标签分类模块。本发明利用深度神经网络来提取样本的高级语义表示,利用自编码器构建端到端的多视图特征提取框架用以学习样本的表征向量。同时,为进一步地提高模型的表示能力,依据一致性假设引入无监督对比学习指