预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

垂径定理教学反思垂径定理教学反思本节课的教学目标是使学生理解圆的轴对称性,掌握垂径定理,并学会运用垂径定理解决有关弦、弧、弦心距以及半径之间的证明和计算问题。垂径定理是圆的轴对称性的重要体现,是今后解决有关计算、证明和作图问题的重要依据,它有着广泛的应用,因此,本节课的教学重点是:垂径定理及其应用。垂径定理的推导利用了圆的轴对称性,它是一种运动变换,这种证明方法学生不常用到,与严格的逻辑推理比较,在证明的表述上学生会发生困难,因此垂径定理的推导是本节课的难点。这节课我通过七个环节来完成本节课的教学目标,采用了类比,启发等教学方法。圆是轴对称图形,每一条直径所在的直线都是对称轴。这点学生理解的很好。根据这个性质先按课本进行合作学习1.任意作一个圆和这个圆的任意一条直径CD;2.作一条和直径CD的垂线的弦,AB与CD相交于点E.提出问题:把圆沿着直径CD所在的直线对折,你发现哪些点、线段、圆弧重合?在学生探索的基础上,得出结论:(先介绍弧相等的概念)①EA=EB;②AC=BC,AD=BD.理由如下:∵∠OEA=∠OEB=Rt∠,根据圆的轴轴对称性,可得射线EA与EB重合,∴点A与点B重合,弧AC和弧BC重合,弧AD和弧BD重合。∴EA=EB,AC=BC,AD=BD.然后把此结论归纳成命题的形式:垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。垂径定理的几何语言∵CD为直径,CD⊥AB(OC⊥AB)∴EA=EB,AC=BC,AD=BD.在学生掌握了垂径定理后,及时应用定理画图和解决实际问题,练习由基础到提高,层层深入,学生很有兴趣。做完题目后总计解题的.主要方法:(1)画弦心距是圆中常见的辅助线;(2)半径(r)、半弦、弦心距(d)组成的直角三角形是研究与圆有关问题的主要思路,它们之间的关系:弦长本节课不足之处是在处理垂径定理的推论时,应归纳相关垂径定理的五个元素:直径、弦中点、垂直、优弧中点、劣弧中点的规律:“知二得三”。鼓励学生积极探讨符合垂径定理以外的所有推论,以增长学生的知识面及提高学生的探究水平。