预览加载中,请您耐心等待几秒...
1/7
2/7
3/7
4/7
5/7
6/7
7/7

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

初一上学期数学知识点归纳总结初一上学期数学知识点归纳总结总结是把一定阶段内的有关情况分析研究,做出有指导性的经验方法以及结论的书面材料,通过它可以正确认识以往学习和工作中的优缺点,我想我们需要写一份总结了吧。那么总结应该包括什么内容呢?下面是小编精心整理的初一上学期数学知识点归纳总结,供大家参考借鉴,希望可以帮助到有需要的朋友。初一上学期数学知识点归纳总结1第二章:整式的加减1、单项式:;单独的一个数或一个字母也是单项式2、系数:;3、单项式的次数:;4、多项式:;叫做多项式的项;的项叫做常数项。5、多项式的次数:;6、整式:;7、同类项:;8、把多项式中的同类项合并成一项,叫做合并同类项;合并同类项后,所得项的系数是合并同前各同类项的系数的和,且字母部分不变。9、去括号:(1)如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同(2)如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反10、一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项第三章:一次方程(组)一、方程的有关概念1、方程的概念:(1)含有未知数的等式叫方程。(2)在一个方程中,只含有一个未知数,并且未知数的指数是1,系数不为0,这样的方程叫一元一次方程。2、等式的基本性质:(1)等式两边同时加上(或减去)同一个代数式,所得结果仍是等式。若a=b,则a+c=b+c或a–c=b–c。(2)等式两边同时乘以(或除以)同一个数(除数不能为0),所得结果仍是等式。若a=b,则ac=bc或二、解方程1、移项的有关概念:把方程中的某一项改变符号后,从方程的一边移到另一边,叫做移项。这个法则是根据等式的性质1推出来的,是解方程的依据。把某一项从方程的左边移到右边或从右边移到左边,移动的项一定要变号。2、解一元一次方程的步骤:解一元一次方程的步骤主要依据1、去分母等式的性质22、去括号去括号法则、乘法分配律3、移项等式的性质14、合并同类项合并同类项法则5、系数化为1等式的性质26、检验3、二元一次方程组(1)将二元一次方程用含有一个未知数的代数式表示另一个未知数;(2)解二元一次方程组的指导思想是转化的思想;(3)解二元一次方程组的方法有:加减消元法;代入消元法;二、列方程解应用题1、列方程解应用题的一般步骤:(1)将实际问题抽象成数学问题;(2)分析问题中的已知量和未知量,找出等量关系;(3)设未知数,列出方程;(4)解方程;(5)检验并作答。2、一些实际问题中的规律和等量关系:(1)几种常用的面积公式:长方形面积公式:S=ab,a为长,b为宽,S为面积;正方形面积公式:S=a2,a为边长,S为面积;梯形面积公式:S=,a,b为上下底边长,h为梯形的高,S为梯形面积;圆形的面积公式:,r为圆的半径,S为圆的面积;三角形面积公式:,a为三角形的一边长,h为这一边上的高,S为三角形的面积。(2)几种常用的周长公式:长方形的周长:L=2(a+b),a,b为长方形的长和宽,L为周长。正方形的周长:L=4a,a为正方形的边长,L为周长。圆:L=2πr,r为半径,L为周长。初一上学期数学知识点归纳总结2(一)正负数1.正数:大于0的数。2.负数:小于0的数。3.0即不是正数也不是负数。4.正数大于0,负数小于0,正数大于负数。(二)有理数1.有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)2.整数:正整数、0、负整数,统称整数。3.分数:正分数、负分数。(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。)2.数轴的三要素:原点、正方向、单位长度。3.相反数:只有符号不同的'两个数叫做互为相反数。0的相反数还是0。4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。(四)有理数的加减法1.先定符号,再算绝对值。2.加法运算法则:同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。3.加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。4.加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。5.a?b=a+(?b)减去一个数,等于加这个数的相反数。(五)有理数乘法(先定积的符号,再定积的大小)1.同号得正,异号得负,并把绝对值相乘。任何数同0相乘