

一种基于特征融合的红外小目标检测方法.pdf
明钰****甜甜
亲,该文档总共14页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
一种基于特征融合的红外小目标检测方法.pdf
本发明公开了一种基于特征融合的红外小目标检测方法,其步骤包括:1、对红外图像进行预处理,避免在训练过程中过拟合;2、构建Transformer架构的神经网络分支提取图像特征;3、构建CNN架构的神经网络分支提取图像特征;4、构建特征融合模块将两个分支的特征进行融合;5、结合两种损失函数来优化模型。本发明利用Transformer分支、CNN分支和一个特征融合模块,可以学习与背景相对应的像素之间的长期依赖关系,融合局部细节特征和全局语义特征,从而实现更精确的目标检测,提升了网络的性能。
基于多特征融合的红外弱小目标检测方法.pdf
本发明提出了基于多特征融合的红外弱小目标检测方法,先基于红外弱小目标局部灰度值大的特性,利用目标与邻域背景的灰度对比度对真实目标进行增强、部分复杂背景进行抑制。其次,利用红外弱小目标自身灰度信息符合二维高斯分布的特性,通过计算红外弱小目标边缘像素点与中心像素点之间的距离和灰度差的协方差来检测目标,得到显着图一。再次,利用红外弱小目标与邻域相似度低的特性,通过计算相似性因子来检测目标,得到显着图二。最后,将显着图一与显着图二进行点乘,通过融合红外弱小目标多种特性得到最终显着图,对最终显着图计算简单阈值进行分
一种基于特征融合的海面小目标检测方法及系统.pdf
本发明公开了一种基于特征融合的海面小目标检测方法,用于对海监视场景,包括如下步骤:步骤1,提取雷达序列的统计复杂性特征,得到雷达序列特征;步骤2,提取雷达图像的空间特征,得到雷达图像特征;步骤3,对所述步骤1的雷达序列特征和所述步骤2的雷达图像特征进行融合处理;步骤4,对所述步骤3的融合结果进行分类,利用分类算法得到相应的分类结果。与现有检测方法相比,本申请通过特征融合提高了检测性能,且大大减少了计算量。
基于多特征融合的红外目标检测方法、装置、设备及介质.pdf
本发明公开了一种基于多特征融合的红外目标检测方法、装置、设备及介质,该方法包括获取检测目标图像;对检测目标图像进行全局阈值分割,得到二值化图像;对二值化图像进行连通域标记,得到候选目标;对每个候选目标进行特征提取,对每个特征通道滤波处理,得到每个候选目标的特征分量值;对候选目标进行多特征融合,获取归一化特征向量;判断归一化特征向量是否达到检测门限,若达到检测门限则保留候选目标,否则删除候选目标。本发明针对红外图像对比度低、目标特征信息少等问题,通过挖掘目标和杂波的多种特征信息进行多特征融合处理,利用多个特
基于时空域特征融合的红外弱小目标的检测方法及装置.pdf
本发明公开了一种基于时空域特征融合的红外弱小目标的检测方法及装置,属于红外探测技术领域,包括步骤:将时域、空域特征信息结合起来检测弱小目标;所述将时域、空域特征信息结合起来具体包括:在时域上提取运动特征得到候选目标区域,在空域上提取目标显著性特征进行空域滤波修补得到背景估计图像,再减去背景估计图像得到空域目标显著图,再融合在时域上得到的时域目标显著图与所述空域目标显著图,得到最终的目标显著图,从最终的目标显著图中分割出弱小目标。本发明可以获得更高的目标检测率、更低的虚警率以及更远的无人机探测距离,并且该方