预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共14页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

本发明公开了一种基于深度学习的图像实例分割方法,其方法为:第一步、获取图像样本,构建训练集;第二步、图像实例分割模型的构建,具体过程为:步骤1、将待训练的图像集中每个图像划分为S*S小网格,根据实际应用进行选取;步骤2、通过ResNet?101网络提取图像特征;步骤3、通过基于加权BiFPN构建的特征网络层,将图像特征进行多尺度融合提取;步骤4、构建联合注意力筛选模块;步骤5、得到实例的掩码信息;步骤6、得到图像实例分割模型;第三步、将待分割的图像,利用上述第二步中得到的图像实例分割模型实现实例分割。有益效果:使模型在处理多尺度特征融合方面表现更好;提高模型对细节信息的把握能力,保证模型的高效性能。