一种基于对比学习的无监督跨域目标重识别方法.pdf
猫巷****婉慧
亲,该文档总共13页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
一种基于对比学习的无监督跨域目标重识别方法.pdf
本发明属于图像处理技术领域,公开了一种基于对比学习的无监督跨域目标重识别方法,包括步骤1、构建无监督跨域目标重识别网络模型,为聚类样本生成伪标签;步骤2、构建基于相机原型的混合内存库;步骤3、基于混合内存库进行联合对比学习,生成可靠伪标签;步骤4、反复迭代步骤1?步骤3,训练所述无监督跨域目标重识别网络模型;步骤5、将待识别的图像输入训练好的模型中,进行目标重识别,输出识别结果。通过本发明减轻了伪标签噪声对对比学习造成的影响,抑制了伪标签噪声的影响,提高目标识别精度。
一种基于双聚类协作学习的跨域行人重识别方法.pdf
本发明涉及一种基于双聚类协作学习的跨域行人重识别方法。包括如下步骤:1:利用风格迁移模型实现源域和目标域之间的迁移,之后两个特征提取模型Net1和Net2分别在源域和源域生成图像集上进行监督学习;2:利用Net1和Net2对目标域和目标域生成图像集进行特征提取,之后利用DBSCAN方法对特征进行聚类;3:核对聚类结果,选取高置信度的结果分别优化Net1和Net2。本发明设计的双聚类方法通过核对两个域上的聚类结果,为模型优化选取了具有高置信度的样本对,最终提升了模型在目标域上的识别性能。
基于位置注意力和精化聚类的无监督跨域行人重识别方法.pdf
本发明为一种基于位置注意力和精化聚类的无监督跨域行人重识别方法,其克服了现有技术中存在的对聚类产生的伪标签噪声和特征辨别性不足的问题。本发明包括以下步骤:(1)以ResNet50网络为基础,将位置注意力模块加入到layer1层之前和layer4层之后;在模型深度卷积开始之前,利用位置注意力块关注样本的位置信息,进行初步的特征提取;在模型提取完特征之后,再利用位置注意力块进行特征挖掘,提取更加细粒度的特征;(2)利用精细化聚类算法模块,剔除噪声干扰样本,实现由粗到精的聚类过程;(3)引入记忆模块,将每个周期
基于位置注意力和精化聚类的无监督跨域行人重识别方法.pdf
本发明为一种基于位置注意力和精化聚类的无监督跨域行人重识别方法,其克服了现有技术中存在的对聚类产生的伪标签噪声和特征辨别性不足的问题。本发明包括以下步骤:(1)以ResNet50网络为基础,将位置注意力模块加入到layer1层之前和layer4层之后;在模型深度卷积开始之前,利用位置注意力块关注样本的位置信息,进行初步的特征提取;在模型提取完特征之后,再利用位置注意力块进行特征挖掘,提取更加细粒度的特征;(2)利用精细化聚类算法模块,剔除噪声干扰样本,实现由粗到精的聚类过程;(3)引入记忆模块,将每个周期
基于对比学习无监督预训练-微调式的雷达目标识别方法.pdf
本发明公开了基于对比学习无监督预训练‑微调式的雷达目标识别方法,首先对原始样本进行预处理,进行数据扩充;然后采用reshape和数据增强的方式增加HRRP样本的结构多样性;再输入SimSiam模块;将SimSiam模块编码器网络的输出在下游分类模块上进行微调,通过shape操作后再输入下游分类模块中,最终实现HRRP识别分类;本发明中采用数据增强的方式,让模型学到更多的有效特征信息,有助于提升迁移到下游分类任务的识别性能。通过定义不同的下游分类模块能够得到各种不同的应用于HRRP目标识别的通用鲁棒模型,为