预览加载中,请您耐心等待几秒...
1/7
2/7
3/7
4/7
5/7
6/7
7/7

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

灌溉管网优化设计方法研究论文摘要:分别阐述了管网布置和管径优化问题的研究进展,分析了求解优化模型的各种算法,通过比较,认为遗传算法在优化应用中,能取得良好效果,预估遗传算法在管网与管径同步优化方面能得到应用。关键词:灌溉管网优化;遗传算法;同步优化随着社会经济的高速发展,水资源的需求量在不断增加。我国总用水量的60%以上用于农业灌溉。相比发达国家,我国灌溉水利用率较低,农业节水潜力巨大。农田灌溉主要通过管道和渠道输水,相比渠道,管道输水有以下优势,首先,管道输水避免了远距离输水过程中的蒸发和渗漏损失,提高了水利用效率,而且不会因为渗水导致土壤盐碱化而无法种植作物。其次,除了地面简单的给水设施外,大部分管道都铺设在地面以下,输水占地少,使得土地的利用效率明显提高,并且管灌对地形的要求低,可逆坡灌溉。第三,灌溉管道水流运动一般依靠外力作用,使用灵活,便于自动化管理,大大减少了灌溉管理人员的工作量,有利于田间管理。因此,管道灌溉是节水灌溉的趋势。在管道供水系统中,工程总造价的50%-80%用于管网,而且不同管网水力特性不同,能耗和运行管理费用不同,因此从满足水量和水压要求的各种可行方案中,寻求系统造价最低或年费用最小的设计方案,对节约投资有非常重要的意义。管网系统的优化研究主要是通过构造抽象或简化的设计模型,利用优化理论和技术合理选择有关参数。1灌溉管网优化设计模型和算法研究现状管网系统工程从规划设计到运行管理,各阶段相互影响,但是每一个阶段设计任务不同,采用的优化模型和算法不同,因此,目前在优化设计中仍然按照相对独立的阶段分别进行设计。(1)管网布置优化:管网水力计算是建立在管网布置确定的基础上。管网布置是否合理,最直接的影响就是管线长度,管线越长,造价越大。其次管网布置还需要综合考虑地形、施工的难易、管路运行可靠性等因素,而这些因素有时需要借助设计者的经验。国内外的学者对管网布置进行了深入研究。董文楚(1984)以造价最小为原则优化了树状输配水管网的布置,首先通过距离最短原则布置了给水栓,然后按1200夹角和经济流速对管网布置进行了逐级调整。朱振锁(1991)分析了自压喷灌管网各级管道单位面积造价与管网形状和面积的关系,并提出了优化布置的顺序。林性粹等人(1993)在低压树状管灌系统优化设计中,首先利用正交表进行了管网布置,然后据非线性数学规划法优化了管径,但得出的不是标准管径。魏永曜(1992)应用总长度最短法得出的最小生成树优化了管网布置,并对其进行了修正,之后以管网造价最小为目标优化了管径,提出了适应不同地形的数学规划法。王雪珍(1995)编制了输配水管网布置和绘图的程序。周荣敏等(2001)应用改进的遗传算法,以管网造价最小为目标,优化了树状管网的布置。(2)管径优化:管径优化是建立在管网布置的基础上。管径优化设计模型包括基于工程经验的非数学规划模型和基于数学技术的数学规划模型两大类。其中线性规划模型、非线性规划模型、动态规划模型都属于数学规划模型,应用较广。若约束条件或目标函数存在线性函数,称为线性规划模型,同理,若存在非线性函数,称为非线性规划模型。动态规划模型是一种求解多阶段决策过程的最优化方法。在管网系统中,管道和各种水力元件的水头损失等都是非线性的,因此,非线性规划模型能够比较真实精确地反应管网系统的实际状态。国内外很多学者建立了大量管网优化设计的非线性规划模型。魏永曜(1983)采用了经济管径而非经济流速来优化管径,首先确定了管段经济水头损失值,然后利用微分求极值确立相应管径,该法简单,但考虑因素较少,而且需对求解管径标准化,破坏了解的最有性。刘子沛(1986)以离散的标准管径作为优化变量,利用动态规划法优化了串联管网,由于该法建立在地形高差大等条件下,实用受限。杨健康(1990)建立的非线性规划模型是以管径为变量,优化目标为允许水头差的分配。陈渠昌、郑耀全等人(1996)以一定的假定为基础,限定了地形和毛管出流量的`范围,以支毛管压力差分配比例为变量,建了单位面积管网投资最小的平地田间管网优化设计模型,由于条件多,应用受限。翟国亮、董文楚(1997)等以变径支管组合方式和组合比例系数为变量,年费用最小为优化目标建立了优化模型,计算步骤是首先计算经济组合比例参数,然后对多种组合方式进行了年投资计算,然后选择最优方案,由于计算繁杂,应用受限。张庆华、马庆斌等人(2000)以管径为变量,管道系统年费用最小为优化目标,建立了管径无约束情况下的优化模型及其求解方法,该方法考虑的影响因素较少,很难推广。王新坤、林性粹等人(2001)以田间管网投资最小为目标建立了优化模型,利用枚举法和动态规划法分两级对支管管径进行了求解,首先利用枚举法确定出了支管允许水头差,然后利用动态规划法得出了支管管径,由于田间面积较大时,不宜采用