预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

明天的成功是今天努力的结果——严老师每天提升一点点,相信自己终会取得优异的成绩数列知识点总结第一部分等差数列一定义式:二通项公式:一个数列是等差数列的等价条件:(a,b为常数),即是关于n的一次函数,因为,所以关于n的图像是一次函数图像的分点表示形式。三前n项和公式:一个数列是等差数列的另一个充要条件:(a,b为常数,a≠0),即是关于n的二次函数,因为,所以关于n的图像是二次函数图像的分点表示形式。四性质结论1.3或4个数成等差数列求数值时应按对称性原则设置,如:3个数a-d,a,a+d;4个数a-3d,a-d,a+d,a+3d2.与的等差中项;在等差数列中,若,则;若,则;3.若等差数列的项数为2,则;若等差数列的项数为,则,且,4.凡按一定规律和次序选出的一组一组的和仍然成等差数列。设,,,则有;5.,,则前(m+n为偶数)或(m+n为奇数)最大第二部分等比数列一定义:成等比数列。二通项公式:,数列{an}是等比数列的一个等价条件是:当且时,关于n的图像是指数函数图像的分点表示形式。三前n项和:;(注意对公比的讨论)四性质结论:1.与的等比中项(同号);2.在等比数列中,若,则;若,则;3.设,,,则有第三部分求杂数列通项公式一.构造等差数列:递推式不能构造等比时,构造等差数列。第一类:凡是出现分式递推式都可以构造等差数列来求通项公式,例如:,两边取倒数是公差为2的等差数列,从而求出。第二类:是公差为1的等差数列二。递推:即按照后项和前项的对应规律,再往前项推写对应式。例如【注:】求通项公式的题,不能够利用构造等比或者构造等差求的时候,一般通过递推来求。第四部分求前n项和一裂项相消法:、二错位相减法:凡等差数列和等比数列对应项的乘积构成的数列求和时用此方法,求:①②①减②得:从而求出。错位相减法的步骤:(1)将要求和的杂数列前后各写出三项,列出①式(2)将①式左右两边都乘以公比q,得到②式(3)用①②,错位相减(4)化简计算三倒序相加法:前两种方法不行时考虑倒序相加法例:等差数列求和:两式相加可得: