预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共24页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2017年河南省洛阳市高考数学三模试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知集合A={x|1<x<10,x∈N}.B={x|x=,n∈A}.则A∩B=()A.{1,2,3}B.{x|1<x<3}C.{2,3}D.{x|1<x<}2.欧拉公式eix=cosx+isinx(i是虚数单位,x∈R)是由瑞士著名的数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数与指数函数的关系,它在复变函数论里有及其重要的地位,被誉为“数学中的天桥”,根据欧拉公式,若,则复数z2在复平面内所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.已知命题p,∀x∈R都有2x<3x,命题q:∃x0∈R,使得,则下列复合命题正确的是()A.p∧qB.¬p∧qC.p∧¬qD.(¬p)∧(¬q)4.已知双曲线﹣=1(a>0,b>0)的离心率为2,则渐近线方程为()A.y=±2xB.y=±xC.y=±xD.y=±x5.已知等比数列{an}满足a1=+3,则a9=()A.B.C.648D.186.如图,在正方形ABCD中,M,N分别是BC,CD的中点,若,则λ+μ的值为()A.B.C.1D.﹣17.若实数x,y满足条件,则z=x+y的最大值为()A.﹣1B.C.5D.﹣58.利用如图算法在平面直角坐标系上打印一系列点,则打印的点在圆x2+y2=25内的个数为()A.2B.3C.4D.59.已知函数f(x)=+ax(a∈R),若f(ln3)=3,则f(ln)=()A.﹣2B.﹣3C.0D.110.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.11.将函数y=f(x)的图象向左平移φ(0<φ<π)个单位后得到函数g(x)=sin2x的图象,当x1,x2满足时,|f(x1)﹣g(x2)|=2,,则φ的值为()A.B.C.D.12.若对于任意实数m∈[0,1],总存在唯一实数x∈[﹣1,1],使得m+x2ex﹣a=0成立,则实数a的取值范围是()A.[1,e]B.C.(0,e]D.二、填空题:本大题共4小题,每小题5分,共20分.13.“a=”是“直线2ax+(a﹣1)y+2=0与直线(a+1)x+3ay+3=0垂直”的.条件(从“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”中选取一个填入)14.已知函数f(x)=aln2x+bx在x=1处取得最大值ln2﹣1,则a=,b=.15.已知P是抛物线y2=4x上的动点,Q在圆C:(x+3)2+(y﹣3)2=1上,R是P在y轴上的射影,则|PQ|+|PR|的最小值是.16.如图,四边形ABCD为直角梯形,∠ABC=90°,CB∥DA,AB=20,DA=10,CB=20,若AB边上有一点P,使得∠CPD最大,则AP=.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(12分)已知数列{an}满足a1=3,an+1=.(1)证明:数列是等差数列,并求{an}的通项公式;(2)令bn=a1a2•…•an,求数列的前n项和Sn.18.(12分)在四棱柱ABCD﹣A1B1C1D1中,四边形ABCD为平行四边形,AA1⊥平面ABCD,∠BAD=60°,AB=2,BC=1.AA1=,E为A1B1的中点.(1)求证:平面A1BD⊥平面A1AD;(2)求多面体A1E﹣ABCD的体积.19.(12分)某销售公司为了解员工的月工资水平,从1000位员工中随机抽取100位员工进行调查,得到如下的频率分布直方图:(1)试由此图估计该公司员工的月平均工资;(2)该公司工资发放是以员工的营销水平为重要依据来确定的,一般认为,工资低于4500元的员工属于学徒阶段,没有营销经验,若进行营销将会失败;高于4500元的员工是具备营销成熟员工,进行营销将会成功.现将该样本按照“学徒阶段工资”、“成熟员工工资”分为两层,进行分层抽样,从中抽出5人,在这5人中任选2人进行营销活动.活动中,每位员工若营销成功,将为公司赢得3万元,否则公司将损失1万元,试问在此次比赛中公司收入多少万元的可能性最大?20.(12分)已知椭圆C:+=1(a>0,b>0)的离心率为,右焦点为F,上顶点为A,且△AOF的面积为(O为坐标原点).(1)求椭圆C的方程;(2)设P是椭圆C上的一点,过P的直线与以椭圆的短轴为直径的圆切于第一象限内的一点M,证明:|PF|+|PM|为定值.21.(12分)已知函数f(x)=ex﹣asinx﹣1,a∈R.(1)若a=1,求f(x)在x=0处的切线方程;(2)若f(x)≥0在区间[0,1)恒成立,求a的取值范围.请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一