预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共22页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2016-2017学年贵州省遵义市航天高中高二(上)期末数学试卷(文科)一、选择题:本大题共12小题每小题5分,共60分.每小题只有一个选项符合题意1.为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样2.已知命题P:有的三角形是等边三角形,则()A.¬P:有的三角形不是等边三角形B.¬P:有的三角形是不等边三角形C.¬P:所有的三角形都是等边三角形D.¬P:所有的三角形都不是等边三角形3.“x2﹣2x<0”是“|x﹣2|<2”的()A.充分条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件4.曲线y=在点(﹣1,﹣1)处的切线方程为()A.y=2x+1B.y=2x﹣1C.y=﹣2x﹣3D.y=﹣2x﹣25.动点P到点M(1,0)与点N(3,0)的距离之差为2,则点P的轨迹是()A.双曲线B.双曲线的一支C.两条射线D.一条射线6.已知某篮球运动员2013年度参加了25场比赛,我从中抽取5场,用茎叶图统计该运动员5场中的得分如图所示,则该样本的方差为()A.25B.24C.18D.167.执行如图所示的程序框图,若输入n的值为7,则输出的s的值为()A.22B.16C.15D.118.下列四个命题中真命题的个数是()①“x=1”是“x2﹣3x+2=0”的充分不必要条件②命题“∀x∈R,sinx≤1”的否定是“∃x∈R,sinx>1”③“若am2<bm2,则a<b”的逆命题为真命题④命题p;∀x∈[1,+∞),lgx≥0,命题q:∃x∈R,x2+x+1<0,则p∨q为真命题.A.0B.1C.2D.39.已知A={(x,y)丨﹣1≤x≤1,0≤y≤2},B{(x,y)丨≤y}.若在区域A中随机的扔一颗豆子,求该豆子落在区域B中的概率为()A.1﹣B.C.D.10.为了解我校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,第2小组的频数为12,则抽取得学生人数为()A.46B.48C.50D.6011.若双曲线x2﹣=1(b>0)的一条渐近线与圆x2+(y﹣2)2=1至多有一个交点,则双曲线离心率的取值范围是()A.(1,2]B.[2,+∞)C.(1,]D.[,+∞)12.已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是()A.(2,+∞)B.(1,+∞)C.(﹣∞,﹣2)D.(﹣∞,﹣1)二、填空题:本大概题共4小题,每小题5分13.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号).若假设第1组抽出的号码为3,则第5组中用抽签方法确定的号码是.14.口袋内有一些大小相同的红球,白球和黑球,从中任摸一球摸出红球的概率是0.3,摸出黑球的概率是0.5,那么摸出白球的概率是.15.已知中心在原点,焦点在y轴上的双曲线的离心率为,则它的渐近线方程为.16.已知P为抛物线x2=4y上的动点,点P在x轴上的射影为M,点A的坐标是(2,0),则|PA|+|PM|的最小值为.三、解答题(本小题共6小题,共70分,写出文字说明,证明过程或步骤)17.已知命题P:方程x2+mx+1=0有两个不等的负实根.命题Q:方程4x2+4(m﹣2)x+1=0无实根.若“P或Q”为真,“P且Q”为假,则实数m的取值范围是.18.某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:日期1月10日2月10日3月10日4月10日5月10日6月10日昼夜温差x(°C)1011131286就诊人数y(个)222529261612该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.(1)求选取的2组数据恰好是相邻两个月的概率;(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程y=bx+a;(附:==)19.在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知点M的极坐标为,曲线C的参数方程为(α为参数).(I)求直线OM的直角坐标方程;(Ⅱ)求点M到曲线C上的点的距离的最小值.20.在平面直角坐标系xoy中,以坐标原点为极点,以x轴的非负半轴为