预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共20页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2016-2017学年安徽省皖北联盟高二(上)期末数学试卷(文科)一、选择题(共12小题,每小题5分,满分60分。在每小题给出的四个选项中,只有一项是最符合题目要求的)1.已知命题p:∀x∈N*,2x>x2,则¬p是()A.∃x∈N*,2x>x2B.∀x∈N*,2x≤x2C.∃x∈N*,2x≤x2D.∀x∈N*,2x<x22.异面直线是指()A.空间中两条不相交的直线B.平面内的一条直线与平面外的一条直线C.分别位于两个不同平面内的两条直线D.不同在任何一个平面内的两条直线3.如图,有一圆盘,其中阴影部分的圆心角为45°,向圆盘内投镖,如果某人每次都投入圆盘内,那么他投中阴影部分的概率为()A.B.C.D.4.圆x2+y2﹣4x+6y=0和圆x2+y2﹣6x=0交于A,B两点,则直线AB的方程是()A.x+3y=0B.3x﹣y=0C.3x﹣y﹣9=0D.3x+y+9=05.已知在△ABC中,角A,B,C分别为△ABC的三个内角,若命题p:sinA>sinB,命题q:A>B,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.Rt△ABC的三个顶点在半径为13的球面上,两直角边的长分别为6和8,则球心到平面ABC的距离是()A.5B.6C.10D.127.已知抛物线y2=2px(p>0)的准线和圆x2+y2+6x+8=0相切,则实数p=()A.p=4B.p=8C.p=4或p=8D.p=2或p=48.设α,β,γ表示平面,l表示直线,则下列命题中,错误的是()A.如果α⊥β,那么α内一定存在直线平行于βB.如果α⊥γ,β⊥γ,α∩β=l,那么l⊥γC.如果α不垂直于β,那么α内一定不存在直线垂直于βD.如果α⊥β,那么α内所有直线都垂直于β9.如图,用小刀切一块长方体橡皮的一个角,在棱AD、AA1、AB上的截点分别是E、F、G,则截面△EFG()A.一定是等边三角形B.一定是钝角三角形C.一定是锐角三角形D.一定是直角三角形10.已知圆C的方程为(x﹣3)2+(y﹣4)2=22,平面上有A(1,0),B(﹣1,0)两点,点Q在圆C上,则△ABQ的面积的最大值是()A.6B.3C.2D.111.一个几何体的三视图是如图所示的边长为2的正方形,其中P,Q,S,T为各边的中点,则此几何体的表面积是()A.21B.C.D.2312.若双曲线﹣=1(﹣16<k<8)的一条渐近线方程是y=﹣x,点P(3,y0)与点Q是双曲线上关于坐标原点对称的两点,则四边形F1QF2P的面积是.A.12B.6C.12D.6二、填空题(共4小题,每小题5分,满分20分)13.如图所示的算法框图中,e是自然对数的底数,则输出的i=.(参考数值:1n2018≈7.610)14.已知F1、F2为椭圆+=1的左、右焦点,过F1且垂直于F1F2的直线交椭圆于A,B两点,则线段AB的长是.15.甲乙两人玩猜数字游戏,先由甲心中任想一个数字记为a,再由乙猜甲刚才想的数字,把乙猜的数字记为b,且a、b∈{0,1,2,…,9}.若|a﹣b|≤1,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,则二人“心有灵犀”的概率为.16.已知点M(a,b)在直线3x+4y﹣15=0上,则的最小值是.三、解答题(共6小题,满分70分)17.设t∈R,已知p:函数f(x)=x2﹣tx+1有零点,q:∀x∈R,|x﹣1|≥2﹣t2.(Ⅰ)若q为真命题,求t的取值范围;(Ⅱ)若p∨q为假命题,求t的取值范围.18.一本新出版的数学活动课教材在某书店销售,按事先拟定的价格进行5天试销,每种进价试销1天,得到如下数据:单价x(元)1819202122销量y(册)6156504845(Ⅰ)若y与x线性相关,且回归直线方程为y=mx+132,求实数m的值;(Ⅱ)预计以后的销售中,销量与单价服从(Ⅰ)中的回归直线方程,若每本数学活动课教材的成本是14元,为了获得最大利润,该教材的单价应为多少元?19.已知两条坐标轴是圆C1:(x﹣1)2+(y﹣1)2=1与圆C2的公切线,且两圆的圆心距是3,求圆C2的方程.20.已知直线l1:y=﹣x+b于抛物线x2=﹣y相切于点P.(Ⅰ)求实数b的值和切点P的坐标;(Ⅱ)若另一条直线l2经过上述切点P,且与圆C:(x+1)2+(y+2)2=25相切,求直线l2的方程.21.如图,在三棱柱ABC﹣A1B1C1中,底面是边长为2的正三角形,倒棱AA1⊥平面ABC,点E,F分别是棱CC1,BB1上的点,且EC=2FB=2.(Ⅰ)若点M是线段AC的中点,证明:(1)MB∥平面AEF;(2)平面AEF⊥平面ACC1A1;(Ⅱ)求三棱锥B﹣AEF的体积.22.已知椭圆E:+=1(a>b>0)的离心率是,点F是椭圆的左焦点,点A为椭圆的右顶点,点B为