预览加载中,请您耐心等待几秒...
1/7
2/7
3/7
4/7
5/7
6/7
7/7

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

(完整word)基于小波变换的图像阔值降噪算法研究开题报告(完整word)基于小波变换的图像阔值降噪算法研究开题报告(完整word)基于小波变换的图像阔值降噪算法研究开题报告中国计量大学毕业设计(论文)开题报告学生姓名:马日斯江·库尔班学号:1200101237专业:测控技术与仪器班级:12测控1班设计(论文)题目:基于小波变换的图像阈值降噪算法研究指导教师:侯德鑫系:计量测试工程学院2016年3月25日基于小波变换的图像阈值降噪算法研究开题报告课题的背景及意义:图像降噪是图像预处理的主要任务之一,其作用是为了提高图像的信噪比,突出图像的期望特征。不同性质的噪声应采用不同的方法进行消噪.最简单的也比较通用的消噪算法,是用傅立叶变换直接进行低通滤波或带通滤波.这种方法虽然简单、易于实现,但它对滤去有用信号频带中的噪声无能为力,并且带宽的选择和高分辨率是有矛盾的。带宽选的过宽,达不到去噪的目的;选的过窄,噪声虽然滤去的多,但同时信号的高频部分也损失了,不但带宽内的信噪比得不到改善,某些突变点的信息也可能被模糊掉了。将小波变换应用于信号处理中,是因为它的主要优点是在时间域和频率域中同时具有良好的局部化特性,从而非常适合时变信号的分析和处理。特别在图像去噪领域中,小波理论受到了许多学者的重视,他们应用小波进行去噪,并获得了非常好的效果。具体来说,小波去噪方法的成功主要得益于小波变换具有以下特点:(1)低熵性由于小波系数的稀疏分布,使得图像变换后的熵降低了;(2)多分辨率由于小波采用了多分辨率的方法,所以可以非常好地刻画信号的非平稳特征,如边缘、尖峰、断点等;(3)去相关性因为小波变换可以对信号进行去相关,且噪声在变换后有白化趋势,所以小波域比时域更利于去噪;(4)选基灵活性由于小波变换可以灵活选择变换基,所以对不同应用场合,对不同的研究对象,可以选用不同的小波母函数,以获得最佳的去噪效果.因此,就信号消噪问题而言,它比传统的傅立叶频率域滤波和匹配滤波器更具有灵活性.以小波变换为基础的时变信号消噪算法是把含噪信号放在二维平面上,利用信号和噪声表现出的截然不同的特性进行分时分频处理,此方法理论上不但能够获得较高的信噪比,而且能够保持良好的时间分辨率。采用小波消噪算法能够更有效地消除噪声,而且消噪后信号的基线平稳,峰形和峰高失真小,可以满足分析的要求。从数学上看,小波去噪问题的本质是一个函数逼近问题,即如何在由小波母函数伸缩和平移所展成的函数空间中,根据提出的衡量准则,寻找对原信号的最佳逼近,以完成原信号和噪声信号的区分。由此可见,小波去噪方法也就是寻找从实际信号空间到小波函数空间的最佳映射,以便得到原信号的最佳恢复。国内外研究现状从对图像进行滤波的过程中所采用的滤波方法来分,可分为空间域滤波、变换域滤波;从滤波类型来分,又可以分为线性滤波和非线性滤波。2002年Do.M。N和VetterliM.提出了一种“真正”的二维图像稀疏表达方法——Contourlet变换,这种变换能够很好的表征图像的各向异性特征.由于Contourlet变换能更好的捕获图像的边缘信息,因此选择合适的阈值进行去噪就能获得比小波变换更好的效果。Starck等人将Curvelet变换应用于图像的去噪过程中并取得了良好的效果该方法虽然能有效的去除噪声,但往往会“过扼杀”Curvelet系数,导致在消除噪声的同时丢失图像细节.在过去的二十年里,自适应滤波器在通信和信号处理领域引起了人们的极大关注。TerenceWang等人针对二维自适应FIR滤波器提出了一种二维最优块随机梯度算法(TDOBSG).这种算法对滤波器的所有系数使用了空间可变的收缩因子。基于使后验估计方差矢量的二范数最小的最小方差准则,在块迭代的过程中选出最优的收敛因子.线性滤波器的最大优点是算法比较简单且速度比较快,缺点是容易造成细节和边缘模糊.在目前对非线性滤波器的研究中,中值滤波器有较明显的优势,很多科学工作者对中值滤波器作了改进或者提出了一些新型的中值滤波器。Loupas等人提出的自适应的加权中值滤波方法(AWMF),但他利用的Speckle噪声模型不够精确,图像细节损失较大。针对中值滤波器在处理矢量信号存在的缺点,Jakko等人提出两种矢量中值滤波器.近年来,小波分析是当前应用数学中一个迅速发展的新领域,它凭借其卓越的优越性,越来越多的被应用于图像去噪等领域,基于小波分析的图像去噪技术也随着小波理论的不断完善取得了较好的效果。上个世纪八十年代Mallet提出了MRA(Multi_ResolutionAnalysis),并首先把小波理论运用于信号和图像的分解与重构,利用小波变换模极大值原理进行信号的奇异性检测,提出了交替投影算法用于信号重构,为小波变换用于图像处理奠定了基础。后来,人们根据信号与噪声在小波