预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共13页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

(完整版)BP神经网络原理及应用(完整版)BP神经网络原理及应用(完整版)BP神经网络原理及应用BP神经网络原理及应用1人工神经网络简介1。1生物神经元模型神经系统的基本构造是神经元(神经细胞),它是处理人体内各部分之间相互信息传递的基本单元。据神经生物学家研究的结果表明,人的大脑一般有个神经元。每个神经元都由一个细胞体,一个连接其他神经元的轴突和一些向外伸出的其它较短分支-—树突组成。轴突的功能是将本神经元的输出信号(兴奋)传递给别的神经元。其末端的许多神经末梢使得兴奋可以同时送给多个神经元。树突的功能是接受来自其它神经元的兴奋.神经元细胞体将接受到的所有信号进行简单地处理后由轴突输出。神经元的树突与另外的神经元的神经末梢相连的部分称为突触.1.2人工神经元模型神经网络是由许多相互连接的处理单元组成。这些处理单元通常线性排列成组,称为层。每一个处理单元有许多输入量,而对每一个输入量都相应有一个相关联的权重。处理单元将输入量经过加权求和,并通过传递函数的作用得到输出量,再传给下一层的神经元。目前人们提出的神经元模型已有很多,其中提出最早且影响最大的是1943年心理学家McCulloch和数学家Pitts在分析总结神经元基本特性的基础上首先提出的M-P模型,它是大多数神经网络模型的基础。(1。1)式(1.1)中,j为神经元单元的偏置(阈值),为连接权系数(对于激发状态,取正值,对于抑制状态,取负值),n为输入信号数目,为神经元输出,t为时间,f()为输出变换函数,有时叫做激发或激励函数,往往采用0和1二值函数或S形函数.1.3人工神经网络的基本特性人工神经网络由神经元模型构成;这种由许多神经元组成的信息处理网络具有并行分布结构。每个神经元具有单一输出,并且能够与其它神经元连接;存在许多(多重)输出连接方法,每种连接方法对应一个连接权系数.严格地说,人工神经网络是一种具有下列特性的有向图:(1)对于每个节点存在一个状态变量xi;(2)从节点i至节点j,存在一个连接权系数wji;(3)对于每个节点,存在一个阈值j;(4)对于每个节点,定义一个变换函数,对于最一般的情况,此函数取形式.1。4人工神经网络的主要学习算法神经网络主要通过两种学习算法进行训练,即指导式(有师)学习算法和非指导式(无师)学习算法.此外,还存在第三种学习算法,即强化学习算法;可把它看做有师学习的一种特例.(1)有师学习有师学习算法能够根据期望的和实际的网络输出(对应于给定输入)间的差来调整神经元间连接的强度或权。因此,有师学习需要有个老师或导师来提供期望或目标输出信号。有师学习算法的例子包括规则、广义规则或反向传播算法以及LVQ算法等。(2)无师学习无师学习算法不需要知道期望输出。在训练过程中,只要向神经网络提供输入模式,神经网络就能够自动地适应连接权,以便按相似特征把输入模式分组聚集。无师学习算法的例子包括Kohonen算法和Carpenter—Grossberg自适应共振理论(ART)等。(3)强化学习如前所述,强化学习是有师学习的特例。它不需要老师给出目标输出。强化学习算法采用一个“评论员”来评价与给定输入相对应的神。2BP神经网络原理2。1基本BP算法公式推导基本BP算法包括两个方面:信号的前向传播和误差的反向传播。即计算实际输出时按从输入到输出的方向进行,而权值和阈值的修正从输出到输入的方向进行.………………输出变量输入变量输入层隐含层输出层图2—1BP网络结构Fig.2—1StructureofBPnetwork图中:表示输入层第个节点的输入,j=1,…,M;表示隐含层第i个节点到输入层第j个节点之间的权值;表示隐含层第i个节点的阈值;表示隐含层的激励函数;表示输出层第个节点到隐含层第i个节点之间的权值,i=1,…,q;表示输出层第k个节点的阈值,k=1,…,L;表示输出层的激励函数;表示输出层第个节点的输出。(1)信号的前向传播过程隐含层第i个节点的输入neti:(3-1)隐含层第i个节点的输出yi:(3-2)输出层第k个节点的输入netk:(3-3)输出层第k个节点的输出ok:(3-4)(2)误差的反向传播过程误差的反向传播,即首先由输出层开始逐层计算各层神经元的输出误差,然后根据误差梯度下降法来调节各层的权值和阈值,使修改后的网络的最终输出能接近期望值。对于每一个样本p的二次型误差准则函数为Ep:(3—5)系统对P个训练样本的总误差准则函数为:(3-6)根据误差梯度下降法依次修正输出层权值的修正量Δwki,输出层阈值的修正量Δak,隐含层权值的修正量Δwij,隐含层阈值的修正量.;;;(3-7)输出层权值调整公式:(3-8)输出层阈值调整公式:(3—9)隐含层权值调整公式:(3-10)隐含层阈值调整公式:(3—11)又因为:(3-12