预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共17页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

高二年级秋季开学考试数学试题一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数满足(是虚数),则复数在复平面内对应的点在A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】【详解】∴,∴,∴复数点为,位于第二象限.选B.2.如果你正在筹划一次聚会,想知道该准备多少瓶饮料,你最希望得到所有客人需要饮料数量的()A.四分位数B.中位数C.众数D.均值【答案】D【解析】【分析】根据平均数的意义可得结果.【详解】四分位数在统计学中把所有数值由小到大排列并分成四等份,处于三个分割点位置的数值;中位数是按顺序排列的一组数据中居于中间位置的数;众数一组数据中出现次数最多的数值;平均数是表示一组数据集中趋势的量数,是指在一组数据中所有数据之和再除以这组数据的个数。所以选择均值较理想.故选:D3.《张丘建算经》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有方锥下广二丈,高三丈,欲斩末为方亭;令上方六尺;问斩高几何?”其意思为:已知方锥(即正四棱锥)下底边长为20尺,高为30尺,现欲从方锥上面截去一段,使之成为方亭(即正四棱台),且使方亭上底边长为8尺(如图所示),则截去小方锥的高为().A.24尺B.18尺C.6尺D.12尺【答案】D【解析】【分析】利用棱锥与棱台的结构特征即求.【详解】设截去小方锥的高为,则,解得(尺)故选:D.4.已知10个产品中有3个次品,现从其中抽出若干个产品,要使这3个次品全部被抽出的概率不小于0.6,则至少应抽出的产品个数为()A.7B.8C.9D.10【答案】C【解析】【分析】根据题意,设至少应抽出个产品,由题设条件建立不等式,由此能求出结果.【详解】解:要使这3个次品全部被抽出的概率不小于0.6,设至少抽出个产品,则基本事件总数为,要使这3个次品全部被抽出的基本事件个数为,由题设知:,所以,即,分别把A,B,C,D代入,得C,D均满足不等式,因为求的最小值,所以.故选:C.【点睛】本题考查概率的应用,解题时要认真审题,仔细解答,注意合理的进行等价转化.5.打靶时,甲命中目标的概率为0.8,乙命不中目标的概率为0.3.若两人同时射击,则他们同时命中目标的概率为()A.B.C.D.【答案】A【解析】【分析】设表示“甲击中目标”,表示“乙击中目标”,他们同时命中目标的概率是,由此能求出结果.【详解】设表示“甲击中目标”,表示“乙击中目标”,两人同时射击一目标,,,他们同时命中目标的概率是.故选:A6.已知向量,,,则().A.5B.10C.D.【答案】A【解析】【分析】由,结合向量模运算即可求解.【详解】∵,∴,又,∴,∴,∴,即.故选:A.7.平面过正方体的顶点,平面平面,平面平面,则直线与直线所成的角为A.B.C.D.【答案】C【解析】【详解】如图所示,平面过正方体的顶点,平面平面,平面平面,,则直线与直线所成的角即为直线与直线所成的角为.故选C.8.如图,在棱长为的正方体中,点、是棱、的中点,是底面上(含边界)一动点,满足,则线段长度的取值范围是A.B.C.D.【答案】D【解析】【详解】因为平面,平面,所以,又因为所以可得平面,当点在线段上时,总有,所以的最大值为,的最小值为,可得线段长度的取值范围是,故选D.【方法点晴】本题主要考查正方体的性质、线面垂直的判定定理的应用,属于难题.解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理;证明直线和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推论;(3)利用面面平行的性质;(4)利用面面垂直的性质,当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.下列命题中正确的是()A.如果一个平面内有两条直线都平行于另一个平面,那么这两个平面平行B.如果一个平面内的任何一条直线都平行于另一个平面,那么这两个平面平行C.分别在两个平行平面内的两条直线互相平行D.过平面外一点有且仅有一个平面与已知平面平行【答案】BD【解析】【分析】根据面面平行的判定定理及性质定理,即可做出判断.【详解】对于A,一个平面内两条直线相交平行于另一个平面,这两个平面平行,故错误;对于B,如果一个平面内的任何一条直线都平行于另一个平面,满足有两条相交直线与另一个平面平行,那么这两个平面平行,故正确;对于C,分别在两个平行平面内的两条直线,可能平行也可能异面,故错误;对于D,过平面外一点有且仅有一个平面与已知平面平行,正确,否则若有两个平面与已知