预览加载中,请您耐心等待几秒...
1/9
2/9
3/9
4/9
5/9
6/9
7/9
8/9
9/9

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

文科数学试卷第Ⅰ卷(共60分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合,,,则等于()A.B.C.D.2.函数的零点的个数为()A.1B.2C.3D.43.已知,,那么“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.设为等差数列的前项和,若,公差,,则()A.8B.7C.6D.55.已知函数在区间上不是单调函数,则的取值范围是()A.B.C.D.6.定义在上的偶函数满足,且在上单调递增,设,,,则,,大小关系是()A.B.C.D.7.设,是双曲线(,)的左、右两个焦点,若双曲线右支上存在一点,使(为坐标原点),且,则双曲线的离心率为()A.B.C.D.8.如图,在△中,已知,,,点为的三等分点(靠近点),则的取值范围为()A.B.C.D.第Ⅱ卷(共110分)二、填空题(每题5分,满分30分,将答案填在答题纸上)9.已知复数满足,则等于.10.某程序框图如图所示,则输出的结果等于.11.若函数的定义域为实数集,则实数的取值范围是.12.设是圆上的点,直线:,则点到直线距离的最大值为.13.如果实数,满足不等式,那么的取值范围是.14.如图,点是外一点,为的一切线,是切点,割线经过圆心,若,,则.三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)15.已知函数().(1)求函数的最小正周期和单调减区间;(2)将函数的图象向右平移个单位长度后得到函数的图象,求函数在区间上的最小值.16.在△中,内角,,所对的边分别为,,,已知,.(1)求的值;(2)求的值.17.如图,在四棱锥中,底面是平行四边形,,,为的中点,平面,,为的中点.(1)证明:平面;(2)证明:平面;(3)求直线与平面所成角的正切值.18.已知过抛物线()的焦点,斜率为的直线交抛物线于,()两点,且.(1)求该抛物线的方程;(2)为坐标原点,为抛物线上一点,若,求的值.19.已知数列的前项和和通项满足.(1)求数列的通项公式;(2)求证:;(3)设函数,,求.20.已知函数().(1)当时,求的图象在处的切线方程;(2)若函数的图象与轴有两个不同的交点,(),求证:(其中为的导函数).天津市耀华中学2017届高三年级暑假验收考试文科数学试卷答案一、选择题题号12345678答案DBBCCCAD二、填空题9.10.5711.12.813.14.2三、解答题16.解:(1)在△中,由,及,可得.又由,有.所以.(2)在△中,由,可得.于是,.所以.17.解:(1)连接,,在平行四边形中,∵为的中点,∴为的中点,又为的中点,∴,∵平面,平面,∴平面;(2)∵,且,∴,即。又平面,平面,∴,∵,∴平面.(3)取的中点,连接,,所以,,由平面,得平面,所以是直线与平面所成的角.在中,,,所以.从而.在中,.即直线与平面所成角的正切值为.18.解:(1)抛物线的焦点为,所以直线的方程为,由消去得.所以,由抛物线定义得,即,所以.所以抛物线方程为.(2)由,方程,化为.解得,,,.所以,.则.因为为抛物线上一点,所以,整理得,所以或.19.解:(1)当时,,,∴,由,得,∴数列是首项,公比为的等比数列,∴.(2),∵4,∴,即.(3)∵,∴.∵,∴.20.解:(1),故,又,所以切线方程为.(2),两式相减得,由,得,只需证,就,即,令(),设,,所以函数在上为减函数,.