预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共26页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2015年安徽省“江南十校”联考高考数学一模试卷(理科)一、选择题(共10小题,每小题5分,满分50分)1.若复数z=(其中a∈R,i是虚数单位)的实部与虚部相等,则a=()A.3B.6C.9D.122.已知命题p:∀x∈R,32x+1>0,有命题q:0<x<2是log2x<1的充分不必要条件,则下列命题为真命题的是()A.¬pB.p∧qC.p∧¬qD.¬p∨q3.下列结论正确的是()A.若直线l∥平面α,直线l∥平面β,则α∥β.B.若直线l⊥平面α,直线l⊥平面β,则α∥β.C.若直线l1,l2与平面α所成的角相等,则l1∥l2D.若直线l上两个不同的点A,B到平面α的距离相等,则l∥α4.已知四个函数f(x)=sin(sinx),g(x)=sin(cosx),h(x)=cos(sinx),φ(x)=cos(cosx)在x∈[﹣π,π]上的图象如图,则函数与序号匹配正确的是()A.f(x)﹣①,g(x)﹣②,h(x)﹣③,φ(x)﹣④B.f(x)﹣①,φ(x)﹣②,g(x)﹣③,h(x)﹣④C.g(x)﹣①,h(x)﹣②,f(x)﹣③,φ(x)﹣④D.f(x)﹣①,h(x)﹣②,g(x)﹣③,φ(x)﹣④5.某校新校区建设在市二环路主干道旁,因安全需要,挖掘建设了一条人行地下通道,地下通道设计三视图中的主(正)视力(其中上部分曲线近似为抛物)和侧(左)视图如图(单位:m),则该工程需挖掘的总土方数为()A.560m3B.540m3C.520m3D.500m36.已知点A(﹣2,0),点M(x,y)为平面区域上的一个动点,则|AM|的最小值是()A.5B.3C.2D.7.已知函数f(x)=x4cosx+mx2+x(m∈R),若导函数f′(x)在区间[﹣2,2]上有最大值10,则导函数f′(x)在区间[﹣2,2]上的最小值为()A.﹣12B.﹣10C.﹣8D.﹣68.在二项式(x3﹣)n(n∈N*)的展开式中,常数项为28,则n的值为()A.12B.8C.6D.49.某班级有6名同学去报名参加校学生会的4项社团活动,若甲、乙两位同学不参加同一社团,每个社团都有人参加,每人只参加一个社团,则不同的报名方案数为()A.4320B.2400C.2160D.132010.以椭圆+=1的顶点为焦点,焦点为顶点的双曲线C,其左、右焦点分别是F1,F2,已知点M坐标为(2,1),双曲线C上点P(x0,y0)(x0>0,y0>0)满足=,则﹣S()A.2B.4C.1D.﹣1二、填空题(共5小题,每小题5分,满分25分)11.已知随机变量ξ﹣N(2,σ2),若P(ξ>4)=0.4,则P(ξ>0)=.12.运行如图所示的程序框图后,输出的结果是13.已知直线l的参数方程是(t为参数),曲线C的极坐标方程是ρ=8cosθ+6sinθ,则曲线C上到直线l的距离为4的点个数有个.14.对于|q|<1(q为公比)的无穷等比数列{an}(即项数是无穷项),我们定义Sn(其中Sn是数列{an}的前n项的和)为它的各项的和,记为S,即S=Sn=,则循环小数0.的分数形式是.15.在棱长为1的正方体ABCD﹣A1B1C1D1中,M是A1D1的中点,点P在侧面BCC1B1上运动.现有下列命题:①若点P总保持PA⊥BD1,则动点P的轨迹所在曲线是直线;②若点P到点A的距离为,则动点P的轨迹所在曲线是圆;③若P满足∠MAP=∠MAC1,则动点P的轨迹所在曲线是椭圆;④若P到直线BC与直线C1D1的距离比为1:2,则动点P的轨迹所在曲线是双曲线;⑤若P到直线AD与直线CC1的距离相等,则动点P的轨迹所在曲线是抛物丝.其中真命题是(写出所有真命题的序号)三、解答题(共6小题,满分75分)16.已知函数f(x)=sin2x•sinφ+cos2x•cosφ+sin(π﹣φ)(0<φ<π),其图象过点(,.)(Ⅰ)求函数f(x)在[0,π]上的单调递减区间;(Ⅱ)若x0∈(,π),sinx0=,求f(x0)的值.17.某校为了解2015届高三毕业班准备考飞行员学生的身体素质,对他们的体重进行了测量,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右前3个小组的频率之比为1:2:4,其中第二小组的频数为11.(Ⅰ)求该校报考飞行员的总人数;(Ⅱ)若经该学校的样本数据来估计全省的总体数据,若从全省报考飞行员的学生中(人数很多)任选3人,设X表示体重超过60kg的学生人数,求X的数学期望与方差.18.已知抛物线C:x2=2y的焦点为F.(Ⅰ)设抛物线上任一点P(m,n).求证:以P为切点与抛物线相切的方程是mx=y+n;(Ⅱ)若过动点M(x0,0)(x0≠0)的直线l与抛物线C相切,试判断直线MF与直线l的位置关系,并予以证明.19.如图,已知五面体ABCDE,其中△