预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共12页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

matlab实现Kmeans聚类算法————————————————————————————————作者:————————————————————————————————日期:个人收集整理勿做商业用途个人收集整理勿做商业用途个人收集整理勿做商业用途题目:matlab实现Kmeans聚类算法姓名吴隆煌学号41158007背景知识简介:Kmeans算法是一种经典的聚类算法,在模式识别中得到了广泛的应用,基于Kmeans的变种算法也有很多,模糊Kmeans、分层Kmeans等。Kmeans和应用于混合高斯模型的受限EM算法是一致的。高斯混合模型广泛用于数据挖掘、模式识别、机器学习、统计分析。Kmeans的迭代步骤可以看成E步和M步,E:固定参数类别中心向量重新标记样本,M:固定标记样本调整类别中心向量.K均值只考虑(估计)了均值,而没有估计类别的方差,所以聚类的结构比较适合于特征协方差相等的类别.Kmeans在某种程度也可以看成Meanshitf的特殊版本,Meanshift是一种概率密度梯度估计方法(优点:无需求解出具体的概率密度,直接求解概率密度梯度.),所以Meanshift可以用于寻找数据的多个模态(类别),利用的是梯度上升法。在06年的一篇CVPR文章上,证明了Meanshift方法是牛顿拉夫逊算法的变种.Kmeans和EM算法相似是指混合密度的形式已知(参数形式已知)情况下,利用迭代方法,在参数空间中搜索解。而Kmeans和Meanshift相似是指都是一种概率密度梯度估计的方法,不过是Kmean选用的是特殊的核函数(uniformkernel),而与混合概率密度形式是否已知无关,是一种梯度求解方式。k—means是一种聚类算法,这种算法是依赖于点的邻域来决定哪些点应该分在一个组中。当一堆点都靠的比较近,那这堆点应该是分到同一组。使用k-means,可以找到每一组的中心点.当然,聚类算法并不局限于2维的点,也可以对高维的空间(3维,4维,等等)的点进行聚类,任意高维的空间都可以.上图中的彩色部分是一些二维空间点。上图中已经把这些点分组了,并使用了不同的颜色对各组进行了标记。这就是聚类算法要做的事情。这个算法的输入是:1:点的数据(这里并不一定指的是坐标,其实可以说是向量)2:K,聚类中心的个数(即要把这一堆数据分成几组)所以,在处理之前,你先要决定将要把这一堆数据分成几组,即聚成几类.但并不是在所有情况下,你都事先就能知道需要把数据聚成几类的。但这也并不意味着使用k-means就不能处理这种情况,下文中会有讲解。把相应的输入数据,传入k—means算法后,当k—means算法运行完后,该算法的输出是:1:标签(每一个点都有一个标签,因为最终任何一个点,总会被分到某个类,类的id号就是标签)2:每个类的中心点。标签,是表示某个点是被分到哪个类了.例如,在上图中,实际上有4中“标签”,每个“标签”使用不同的颜色来表示。所有黄色点我们可以用标签0表示,所有橘色点可以用标签1来表示,等等。在本文中,使用上图的二维坐标(x,y)向量为数据集.假设我们要将这些点聚成5类,即k=5.我们可以看出,有3个类离的比较远,有两个类离得比较近,几乎要混合在一起了。当然,数据集不一定是坐标,假如你要对彩色图像进行聚类,那么你的向量就可以是(b,g,r),如果使用的是hsv颜色空间,那还可以使用(h,s,v),当然肯定可以有不同的组合例如(b*b,g*r,r*b),(h*b,s*g,v*v)等等.在本文中,初始的类的中心点是随机产生的。如上图的红色点所示,是本文随机产生的初始点。注意观察那两个离得比较近的类,它们几乎要混合在一起,看看算法是如何将它们分开的.类的初始中心点是随机产生的。算法会不断迭代来矫正这些中心点,并最终得到比较靠近真实中心点的一组中心点。当然,最终的结果不一定就是真实的那一组中心点,算法会尽量向真实的靠近。每个点(除了中心点的其他点)都计算与5个中心点的距离,选出一个距离最小的(例如该点与第2个中心点的距离是5个距离中最小的),那么该点就归属于该类.上图是点的归类结果示意图.经过步骤3后,每一个中心center(i)点都有它的”管辖范围”,由于这个中心点不一定是这个管辖范围的真正中心点,所以要重新计算中心点,计算的方法有很多种,最简单的一种是,直接计算该管辖范围内所有点的均值,做为心的中心点new_center(i).如果重新计算的中心点new_center(i)与原来的中心点center(i)的距离大于一定的阈值(该阈值可以设定),那么认为算法尚未收敛,使用new_center(i)代替center(i)(如图,中心点从红色点转移到绿色点),转步骤3;否则,认为算法已经收敛,则new_cent