预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共12页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

影响粮食产量的相关因素分析我国土地资源稀缺,人口多而粮食需求量大,因此粮食产量的稳定增长,直接影响着人民生活和社会的稳定与发展。下面是小编帮大家整理的影响粮食产量的相关因素分析,仅供参考,欢迎大家阅读。为了研究中国影响粮食产量的各种因素,通过经济理论分析得出粮产量与以下四个因素有关,现建模如下:y=α+β1X1+β2X2+β3X3+β4X4+UX1:农业机械总动力(万千瓦)X2:有效灌溉面积(千公顷)X3:化肥施用量(万吨)X4:农业从业人员(万人)Y:粮食总产量(万吨)数据资料如下:地区X1X2X3X4Y北京399.2328.217.969.7144.2天津593.4353.216.679.7124.1河北7000.44482.3270.61665.52551.1山西1701.3110587658.3853.4内蒙古1350.32371.774.8524.31241.9辽宁1339.81440.7109.8651.21140.0吉林1015.41315.1112.1516.81638.0黑龙江1613.82032121.6744.12545.5上海142.5285.919.384.6174.0江苏2925.33900.9335.51480.23106.6浙江1990.11403.289.71014.91217.7安徽2975.93197.2253.22001.82472.1福建873.3940.2123.3768.7854.7江西902.31903.4106.9983.41614.6山东7025.24824.9423.22462.63837.7河南5780.64725.3419.53558.64101.5湖北1414.02072.5247.11159.12218.5湖南2209.72677.5182.22071.42767.9广东1763.91478.5176.21570.11760.1广西1467.91501.6157.81556.81528.5海南200.9179.826.3177.2199.6重庆586.5624.672921.51106.9四川1679.72469212.62631.13372.0贵州618.6653.471.31372.11161.3云南1301.31403.4112.11674.31467.8西藏114.51572.590.196.2陕西1042.91308131.21002.21089.1甘肃1056.9981.564.5697.5713.5青海256.2211.47.2142.382.7宁夏380.6398.823.6153.1252.7新疆851.23094.379.2314.5783.7第一,进行OLS检验DependentVariable:YMethod:LeastSquaresDate:05/16/04Time:14:53Sample:131Includedobservations:31VariableCoefficientStd.Errort-StatisticProb.X1-0.1362880.087494-1.5576810.1314X20.3015940.1348122.2371360.0341X35.5783721.9193772.9063450.0074X40.3595310.1519242.3665260.0257C79.59973119.36160.6668790.5107R-squared0.902706Meandependentvar1490.890AdjustedR-squared0.887738S.D.dependentvar1141.343S.E.ofregression382.4131Akaikeinfocriterion14.87757Sumsquaredresid3802234.Schwarzcriterion15.10886Loglikelihood-225.6023F-statistic60.30791Durbin-Watsonstat1.447710Prob(F-statistic)0.000000从估计结果可以看出,模型拟合较好,可决系数R2=0.9027,表明模型在整体上拟合非常好。系数显著性检验:对于β,T统计量为负,说明β1未通过检验,即农业机械总动力对粮产量的影响不显著,初步决定删除X1。第二,从影响粮产量的因素来看,所选的四个解释变量与粮产量都有密切关系,因此它们之间可能具有较强的共线性,现进行多重共线性检验:(1)根据简单相关系数公式,该模型中四个解释变量得相关系数矩阵如图所示:X1X2X3X4X110.8820383578510.8633335592230.714970041093X20.88203835785110.9017697