预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

改进小波算法在滚动轴承故障诊断的应用 Title:ImprovedApplicationofWaveletAlgorithmforRollingBearingFaultDiagnosis Abstract: Rollingbearingfaultdiagnosisplaysacriticalroleinensuringthereliableandsafeoperationofrotatingmachinery.Asanefficientsignalprocessingtool,thewaveletalgorithmhasbeenwidelyappliedinfaultdiagnosisduetoitsexcellenttime-frequencyanalysisabilities.Inthispaper,weproposeanimprovedapplicationofthewaveletalgorithmforrollingbearingfaultdiagnosis.Byintegratingadvancedtechniquessuchasdenoising,featureextraction,andclassification,theproposedapproachenhancestheaccuracyandreliabilityoffaultdetectionanddiagnosisinrollingbearings.Experimentalresultsshowthattheimprovedwaveletalgorithmeffectivelyidentifiesanddiagnosesdifferenttypesofrollingbearingfaults,contributingtocondition-basedmaintenancestrategiesandthepreventionofcatastrophicmachinefailures. 1.Introduction Rollingbearingsareessentialcomponentsofrotatingmachinery,includingmotors,gearboxes,andturbines.Bearingfaults,suchaspitting,spalling,andmisalignment,canleadtocatastrophicmachinefailuresifnotdetectedanddiagnosedinatimelymanner.Traditionalfaultdiagnosismethods,suchasvibrationanalysisandacousticemission,havesomelimitationsintermsofsignalanalysisandinterpretation.Thewaveletalgorithm,basedonthetransformtheory,hasemergedasapowerfultoolinfaultdiagnosisduetoitsabilitytosimultaneouslyanalyzetimeandfrequencyinformation. 2.BasicTheoryoftheWaveletAlgorithm Thewaveletalgorithmdecomposesasignalintodifferentscalesandfrequencybandsusingwaveletfunctions.Thetime-scalerepresentationprovidedbythewavelettransformallowsforaneffectiveanalysisoftransientandnon-stationarysignals.Thebasictheoryofthewaveletalgorithm,includingcontinuouswavelettransform(CWT)anddiscretewavelettransform(DWT),isintroducedinthissection. 3.SignalPreprocessingandDenoising Oneofthechallengesinrollingbearingfaultdiagnosisisthepresenceofnoiseinacquiredsignals,whichcanmaskthefaultsignature.Inthissection,variousdenoisingtechniquesarereviewed,includingwavelet-baseddenoising,threshold