预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共58页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

《提高小学生数学口算能力》实验课题结题报告 第一篇:《提高小学生数学口算能力》实验课题结题报告《提高小学生数学口算能力》实验课题结题报告一、课题研究的理论依据与现实意义研究背景口算能力是每个人必须具备的一项基本能力,培养学生的口算能力是小学数学教学的一项重要任务,是学生今后学习数学的重要基础。在小学数学教学中,计算教学所占的课时居于首位,这足以说明计算教学的重要性。近年来,我们所听的优质课、公开课、观摩课大多是新课程新增的内容,如找规律,统计,观察图形等。当大家都把研究的慧眼放在新增的教材内容时,我发现——孩子的计算能力下降了。通过平时检测和期末考试的质量分析情况也能看出,学生的计算能力普遍较低,这无疑给学生的发展造成了巨大的障碍。要迅速有效的提高学生计算能力,更好的发展学生的思维,采取有效的措施和方法来培养学生的口算能力,使学生的口算既准确又迅速,从而达到新课程标准中所要求的熟练程度并使计算方法合理灵活。因此,如何提高学生的口算能力就成了小学数学教学研究的重要问题。二、实验的过程与措施(一)明算理,懂法则口算教学让学生在理解算理的基础上,撑握计算的法则,方法。其中,弄清算理是关键。如:小学一年级“凑十法”的教学,可先让学生在老师的指导下,完成实物操作过程,通过摆弄学具,及眼、耳、口多种感官的协同活动,帮助学生形成丰富的表象,然后让学生根据操作过程说出自己的思想过程,为实现认识从具体到抽象的过渡做好准备。如:9+4可表述为:9和1组成10,把4分成3和1。9加上1得10,10+3得13;4和6组成10,把9分成6和3,4加上6得10,10+3得13.再经过9+3,9+5等的练习,概括出“凑十法”的方法与规律:看大数,拆小数,看小数拆大数,先凑十,再加几。这样经过感知观察,形成象。抽象概括三个学习阶段及相应练习。学生实现了从具体到抽象,又从抽象到具体的这一认识过程,既弄清了算理,又掌握了法则,保证了初算的正确性。(二)重视思维过程,形成技能技巧口算能力的形成是一个渐进的过程,在理解法则阶段,学生总是进行着详尽的展开式的思维过程,在形成计算技能的计算过程中,学生的思维活动是在逐层次的简略、压缩,计算的步骤逐步地简化,计算推理过程也逐渐简缩,到最后,由于计算技能的熟练,一些简单的计算能脱口而出,实现计算思维活动的“自动化”。因此,在教学采取,先慢后快的原则,训练初期,侧重于法则的理解,和基本计算方法的的掌1握,只要求正确,不要求速度,着力于巩固口算知识的为技能的形成打好基础。随着知识的深化,在练习中让学生进一步理解算理,并加强算法指导,引导学生逐步简化思维过程,形成口算技巧。《新大纲》对口算教学的要求是:要引导学生在理解的基础上掌握基本的计算方法,坚持经常练习,逐步达到熟练。可见,要培养学生的口算技能,除了让学生掌握算法外,还需要经常性的练习,做到天天练。2、加强目的性与针对性的训练首先,要加强基本口算的训练,只在实实在在地练好基本口算,才能切实地提高学生的计算能力。其次,易错的题目要及早预防,反复练习,研究证明,学生在学习数学课程时,肯定会出现具有普遍性的特殊错误类型,且与使用的教学方法无关。有些错误则是学生个人认知结构不完善所至。如老想着凑整,而全然不考虑运算顺序。其次,易混淆的题目对比练习,可增强培养学生的观察能力,增强的清晰性。最后,要有意识逐步提高学生口算的速度。3、训练形式要灵活多样首先,训练形式要分散,集中相结合。在平时要坚持分散训练,如每天做5分钟的“天天练”。经过一定时间后,可进行集中训练,帮助学生归纳方法,沟通知识之间的联系,实现由量变到质变的飞跃。其次,口算形式灵活多样,如;指名口答,集体抢答,开火车、对口令、连线、找朋友等。组织口算比赛或听算与视算等形式。4、培养学生良好的口算习惯(1)审题习惯。帮助学生克服不审题,提笔就算的毛病。(2)思考习惯。引导学生形成一种勤于思考,寻找最简法的心算。(3)检验习惯,要培养学生认真负责的学习态度,养成自觉检验的习惯。(4)改错习惯。培养学生主动分析自己的错误,并加以改正的良好三、具体操作方法教师抓基本口算、教方法、常训练。(一)抓基本口算小学数学教学中的口算分为基本口算、一般口算和特殊口算三类。这三类口算以基本口算的内容为主,基本口算必须要求熟练,而熟练的程度是指达到“脱口而出”,其它两类口算只要求比较熟练或学会。因此,教学时要注意抓好如下几个方面:1、直观表象助口算。从运算形式看,小学低年级的口算是从直观感知过渡到表象的运算。如教学建立9.5+2.5的表象:先出示装有9块饼干,另外再准备2块,让学生想一想,“两个0.5块饼干应该怎样表示?”很快有学生说:“我拿两个半块饼就可以了”老师再问:怎么样计算更快?学生很快说出:先算9块饼与2块饼合起来是11块饼,再把两个半块