预览加载中,请您耐心等待几秒...
1/7
2/7
3/7
4/7
5/7
6/7
7/7

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第2讲平面向量基本定理及坐标表示基础巩固题组(建议用时:40分钟)一、填空题1.(2015·泰州检测)已知在▱ABCD中,eq\o(AD,\s\up6(→))=(2,8),eq\o(AB,\s\up6(→))=(-3,4),则eq\o(AC,\s\up6(→))=________.解析因为四边形ABCD是平行四边形,所以eq\o(AC,\s\up6(→))=eq\o(AB,\s\up6(→))+eq\o(AD,\s\up6(→))=(-1,12).答案(-1,12)2.(2014·福建卷)在下列向量组中,可以把向量a=(3,2)表示出来的是________(填序号).①e1=(0,0),e2=(1,2);②e1=(-1,2),e2=(5,-2);③e1=(3,5),e2=(6,10);④e1=(2,-3),e2=(-2,3).解析由题意知,①中e1=0,③,④中两向量均共线,都不符合基底条件,只有②适合.答案②3.(2014·青岛质量检测)已知向量a=(-1,2),b=(3,m),m∈R,则“m=-6”是“a∥(a+b)”的________条件(填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”).解析由题意得a+b=(2,2+m),由a∥(a+b),得-1×(2+m)=2×2,所以m=-6,则“m=-6”是“a∥(a+b)”的充要条件.答案充要4.已知a=(1,1),b=(1,-1),c=(-1,2),则c=________(用a,b表示).解析设c=λa+μb,∴(-1,2)=λ(1,1)+μ(1,-1),∴eq\b\lc\{\rc\(\a\vs4\al\co1(-1=λ+μ,,2=λ-μ,))∴eq\b\lc\{\rc\(\a\vs4\al\co1(λ=\f(1,2),,μ=-\f(3,2),))∴c=eq\f(1,2)a-eq\f(3,2)b.答案eq\f(1,2)a-eq\f(3,2)b5.已知向量a=(1,2),b=(x,1),u=a+2b,v=2a-b,且u∥v,则实数x的值为________.解析因为a=(1,2),b=(x,1),u=a+2b,v=2a-b,所以u=(1,2)+2(x,1)=(2x+1,4),v=2(1,2)-(x,1)=(2-x,3).又因为u∥v,所以3(2x+1)-4(2-x)=0,即10x=5,解得x=eq\f(1,2).答案eq\f(1,2)6.若三点A(2,2),B(a,0),C(0,b)(ab≠0)共线,则eq\f(1,a)+eq\f(1,b)的值为________.解析eq\o(AB,\s\up6(→))=(a-2,-2),eq\o(AC,\s\up6(→))=(-2,b-2),依题意,有(a-2)(b-2)-4=0,即ab-2a-2b=0,所以eq\f(1,a)+eq\f(1,b)=eq\f(1,2).答案eq\f(1,2)7.向量a,b,c在正方形网格中的位置如图所示,若c=λa+μb(λ,μ∈R),则eq\f(λ,μ)=________.解析以向量a和b的交点为原点建立如图所示的平面直角坐标系(设每个小正方形边长为1),则A(1,-1),B(6,2),C(5,-1),∴a=eq\o(AO,\s\up6(→))=(-1,1),b=eq\o(OB,\s\up6(→))=(6,2),c=eq\o(BC,\s\up6(→))=(-1,-3).∵c=λa+μb,∴(-1,-3)=λ(-1,1)+μ(6,2),即-λ+6μ=-1,λ+2μ=-3,解得λ=-2,μ=-eq\f(1,2),∴eq\f(λ,μ)=4.答案48.(2015·苏、锡、常、镇四市调研)如图,在△ABC中,BO为边AC上的中线,eq\o(BG,\s\up6(→))=2eq\o(GO,\s\up6(→)),若eq\o(CD,\s\up6(→))∥eq\o(AG,\s\up6(→)),且eq\o(AD,\s\up6(→))=eq\f(1,5)eq\o(AB,\s\up6(→))+λeq\o(AC,\s\up6(→))(λ∈R),则λ的值为________.解析因为eq\o(CD,\s\up6(→))∥eq\o(AG,\s\up6(→)),由向量共线定理可得存在实数k,使得eq\o(CD,\s\up6(→))=keq\o(AG,\s\up6(→)).又eq\o(CD,\s\up6(→))=eq\o(AD,\s\up6(→))-eq\o(AC,\s\up6(→